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It is generally believed that the old quantum theory, as presented by Niels Bohr in
1913, fails when applied to few electron systems, such as the H2 molecule. Here we
review recent developments of the Bohr model that connect it with dimensional
scaling procedures adapted from quantum chromodynamics. This approach treats
electrons as point particles whose positions are determined by optimizing an
algebraic energy function derived from the large-dimension limit of the
Schrödinger equation. The calculations required are simple yet yield useful
accuracy for molecular potential curves and bring out appealing heuristic aspects.
We first examine the ground electronic states of H2, HeH, He2, LiH, BeH and Li2.
Even a rudimentary Bohr model, employing interpolation between large and small
internuclear distances, gives good agreement with potential curves obtained from
conventional quantum mechanics. An amended Bohr version, augmented
by constraints derived from Heitler–London or Hund–Mulliken results, dispenses
with interpolation and gives substantial improvement for H2 and H3. The relation
toD-scaling is emphasized. A key factor is the angular dependence of the Jacobian
volume element, which competes with interelectron repulsion. Another version,
incorporating principal quantum numbers in the D-scaling transformation,
extends the Bohr model to excited S states of multielectron atoms. We also discuss
kindred Bohr-style applications of D-scaling to the H atom subjected to
superstrong magnetic fields or to atomic anions subjected to high frequency,
superintense laser fields. In conclusion, we note correspondences to the
prequantum bonding models of Lewis and Langmuir and to the later resonance
theory of Pauling, and discuss prospects for joining D-scaling with other methods
to extend its utility and scope.
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1. Introduction

Quantum chemistry has achieved excellent agreement between theory and experiment,
even for relatively large molecules, by using computational power to overcome the
difficulty of treating electron–electron interactions [1–11]. The usual discussions of
molecular electronic structure are based on solving the many-particle Schrödinger
equation with varying degrees of sophistication. These include diffusion Monte Carlo
methods [12], coupled cluster expansions, configuration interaction, density functional
theory [2], and reduced density matrix mechanics [13]. All are intensely computational and
a physically appealing picture of the chemical bond is left behind. Despite the successful
tools of modern computational chemistry, there remains a need for understanding
electronic structures in some relatively simple way that is capable of describing ground and
excited states of atoms and molecules with useful accuracy.

In this review we bring together recent work which resurrects the venerable Bohr model,
showing its utility for treating multielectron atoms and molecules. Beyond intuitive,
pedagogic appeal, the model is found to yield molecular potential energy curves with
surprisingly good accuracy. The new appreciation of the Bohr model has emerged from
a dimensional scaling (D-scaling) approach to electronic structure [14]. This unconventional
procedure emulates a method developed for quantum chromodynamics [15].
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By generalizing the Schrödinger equation to D dimensions, introducing a D-dependent
length scale, and passing to the large-D limit, quantum dynamics morphs into classical
mechanics. That has provided a congenial link between prequantum and postquantum
descriptions of atomic structure and the chemical bond, reconciling Bohr and Sommerfeld
with Heisenberg and Schrödinger.

Taking the dimension of space as a variable has become a customary expedient in
statistical mechanics, in particle and nuclear physics, and in quantum optics. Typically
a problem is solved for some ‘unphysical’ dimension D 6¼ 3 where the physics becomes
much simpler, and perturbation theory is employed to obtain an approximate solution
for D¼ 3. A celebrated instance of this strategy was Wilson’s use of exact values attained
at D¼ 4 to obtain accurate critical exponents for D¼ 3 phase transitions, thereby solving
a wide class of notoriously recalcitrant problems of long-standing [16,17].

Impetus for much work pursuing dimensional scaling stratagems in chemical physics,
antecedent to that reviewed here, came from a tutorial article published in 1980 by Witten
[15]. In discussing quarks, gluons, and ‘impossible problems’ of quantum chromodynamics,
he emphasized an aspect shared with atomic physics. Often physical parameters, such as
masses and charges of particles, ‘disappear’ from dynamical equations when variables such
as distances and energies are expressed in terms of dimensionless ratios. In that case, there is
no ‘free parameter’ that can be used to set up a perturbation or interpolation calculation.
Then a quantity like dimension, that otherwise would be considered as given and fixed, may
be treated as variable, in order to provide a perturbation parameter.

Witten illustrated the procedure with a rough calculation of the large-D limit for the
ground states of hydrogen and helium atoms. His results differed from D¼ 3 by �60%,
and he concluded that the method looked unpromising for electronic structure. However,
simple improvements were found to markedly reduce the error. Merely using the exact
D-dependence for the H atom to define D-scaled distance and energy units sufficed to
bring the large-D limit for He within �5% of the D¼ 3 result. Furthermore, the accuracy
for He was improved to 5 significant figures by interpolation between the D!1 and
D! 1 limits [18] and to 9 figures by a perturbation expansion in 1/D [19,20]. Other
prototype applications of D-scaling, compiled in two books [14,21] and several review
articles [22–28], confirmed its utility for treating non-separable problems involving strong
dynamical interactions.

Among aspects of D-scaling of electronic structure that need further study are
procedures for molecules and for excited atomic states. The hydrogenic D-scaling, which
works well for ground state atoms, when applied to the Hþ2 molecule fails to give chemical
bonding at the large-D limit. This occurs because the length scale for the internuclear
distance is independent of that for the electrons, so a different scaling scheme (termed
‘uniform’) is required. Likewise, use of hydrogenic scaling caused excited atomic states
to collapse to the ground state in the large-D limit. Among the welcome virtues of the work
reviewed here is that both these shortcomings are overcome in the renascent Bohr model.

2. Bohr model as a large-D limit of wave mechanics

Niels Bohr, in July, 1912, at the end of his three month postdoctoral visit to Manchester,
sent an outline of his ideas ‘On the constitution of atoms and molecules’ to his mentor,
Ernest Rutherford. In analysing models having Rutherford’s point-like nuclei, Bohr
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emphasized that ‘There seems to be nothing to allow us from mechanical considerations

to discriminate between different radii and times of vibration [of electron motions].’

Thus, convinced that classical physics cannot explain the atom, Bohr was provoked to

‘introduce . . . a hypothesis, from which we can determine the quantities in question’. That

led Bohr to the results presented in his celebrated trilogy of 1913 papers [29–31].

In accord with his concern about a length scale, we now find that introducing

a D-dependent length scale converts the large-D limit of the Schrödinger equation into

Bohr’s model.
In contrast to the uncanny success of the Bohr model for a one-electron atom, efforts

to apply it to the H2 molecule or larger systems proved unsatisfactory [32,33]. However,

with modest extensions, we find the model does provide surprising accuracy for potential

energy curves of H2 and other molecules and a new perspective on configurations of

multielectron atoms.

2.1. Derivation of the Bohr model for H2 via D-scaling

We first outline the variant of D-scaling recently applied to H2 [34] and then indicate

how it differs from what preceded [14,35]. Figure 1 displays coordinates specifying

electronic positions in the H2 molecule. All distances are expressed in terms of the

Bohr length a0¼ �h2/me2, where m is the electron mass and e its charge, and energies are in

the Hartree unit e2/a0. We start with the Schrödinger equation Ĥ� ¼ E�; for H2, the

Hamiltonian is:

Ĥ ¼ �
1

2
r2
1 �

1

2
r2
2 þ Vð�1, �2, z1, z2,�Þ: ð2:1Þ

The Coulomb potential energy V is given by

V ¼ �
Z

ra1
�

Z

rb1
�

Z

ra2
�

Z

rb2
þ

1

r12
þ
Z2

R
, ð2:2Þ

Figure 1. Cylindrical coordinates (top) and electronic distances (bottom) for H2 molecule.
The nuclei Z are fixed at a distance R apart. In the Bohr picture the two electrons rotate about
the internuclear axis z with coordinates �1, z1 and �2, z2, respectively; the dihedral angle � between
the (�1, z1) and (�2, z2) planes remains constant at either �¼� or �¼ 0. The sketch corresponds to
configuration 2 of Figure 8, with �¼�.
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in terms of distances defined in Figure 1. In cylindrical coordinates (i¼ 1, 2)

rai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i þ zi �

R

2

� �2
s

, rbi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i þ zi þ

R

2

� �2
s

, ð2:3Þ

r12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 � z2Þ

2
þ �21 þ �

2
2 � 2�1�2 cos�

q
, ð2:4Þ

where R is the internuclear spacing and � the dihedral angle between the planes containing
the electrons and the internuclear axis.

To generalize to D-dimensions, we endow each vector with D Cartesian coordinates.
Thereby the potential energy V retains the same form as for D¼ 3, but the Laplacian
operators r2 in the kinetic energy and the Jacobian volume element J are modified.
We then transform the wavefunction by

� ¼ ð�1�2Þ
�ðD�2Þ=2�, ð2:5Þ

and scale the coordinates by �2 and the energy by ��2, with �¼ (D� 1)/2. This recasts the
Schrödinger equation, for � states, as

T1 þ T2 þUþ Vð Þ� ¼ E�, ð2:6Þ

where

T1 þ T2 ¼
X
i¼1,2

�
2

ðD� 1Þ2
@2

@�2i
þ
@2

@z2i
þ

1

�2i

@2

@�2

� �
, ð2:7Þ

and

U ¼
ðD� 2ÞðD� 4Þ

2ðD� 1Þ2
1

�21
þ

1

�22

� �
: ð2:8Þ

In the limit D!1 the derivative terms Ti (i¼ 1, 2) in the kinetic energy are quenched,
whereas the centrifugal portion U survives. The corresponding energy E(D!1) for any
given internuclear distance R is then obtained simply as the extremum of the effective
potential, UþV, given by

E ¼
1

2

1

�21
þ

1

�22

� �
þ V �1, �2, z1, z2,�,Rð Þ: ð2:9Þ

This is exactly the energy function for the Bohr model of H2; in Section 3 we evaluate its
extremum solutions and extensions to other molecules.

The D-scaling applied here differs from that used previously [14,35] only in how the
dihedral angle � is treated. The previous procedure employed the full Jacobian,
J¼ (�1�2)

D�2(sin �)D�3, in transforming the wavefunction via �! J�1/2�, and likewise
included corresponding �-dependent factors in the Laplacian. In the large-D limit, the net
result is that the energy function becomes

E ¼
1

2

1

�21
þ

1

�22

� �
1

sin2 �
þ Vð�1, �2, z1, z2,�,RÞ, ð2:10Þ

which differs from Equation (2.9) only by the factor 1/sin2� in the centrifugal term.
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Our current procedure, designed to reduce to the Bohr model at the large-D limit,

retains the D¼ 3 form for the �-part of both the Jacobian and Laplacian. This has
important consequences. Figure 2 displays the ground state E(R) functions for the large-D

limit obtained from Equations (2.9) and (2.10). Whereas the Bohr model version (solid

curve) gives a good zero-order approximation, the ‘full-J’ version (dashed curve) fails to
exhibit binding. Also shown is the substantial improvement to the Bohr result obtained

from a simple interpolation correction (described in Section 3; see Figure 9).
In essence, D-scaling procedures resemble gauge transformations. Many varieties of

scaling are feasible, subject only to the constraint that as D! 3 the scaled Schrödinger

equation reduces to the correct form. The basic aim is to devise a scaling that removes the

major, generic D-dependence, enabling the easily evaluated D!1 limit to approximate
the D¼ 3 energy. With the ‘full-J’ scaling previously used [35], when D is increased the

(sin�)D�3 factor in the Jacobian forces � towards 90�, while minimization of electron–
electron repulsion requires �! 180�. The effect is to overweight electron repulsion;

this is a chief source of the failure to obtain chemical bonding from Equation (2.10).

In Section 5 we discuss further aspects of variant scalings. In our ‘Bohr-scaling’ variant �
remains a fully quantum variable as D!1 rather than being converted to a semiclassical

parameter along with the � and z coordinates. This avoids overweighting electron

repulsion and hence favours chemical bonding.
The scaling procedure enables, in the large-D limit, calculations to be carried out in the

scaled space that are entirely classical. The extremum equations, @E/@z¼ 0 and @E/@�¼ 0,

are identical to classical equilibrium configurations under Newton’s second law. Although
the electrons are thereby confined to specific orbits in the scaled space, the uncertainty

principle is nonetheless satisfied. This is so because the conjugate momenta are scaled

inversely to the coordinates, leaving the position-momentum commutator invariant.

R, a.u.

Figure 2. Intermolecular potential energy curves E(R) for electronic ground state of H2 in the
D!1 limit, obtained from Equation (2.9) for Bohr model (solid curve) and from Equation (2.10)
for ‘full-J’ scaling (dashed curve). Also shown (lower solid curve) is an improvement obtained by an
interpolation method described in Section 3 (see Figure 9). Dots show accurate D¼ 3 results
obtained from high-quality wavefunctions [36,37].
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The continuous transition between the scaled space and the unscaled space in effect relates
classical trajectories at large-D to corresponding quantum distributions at D¼ 3. This
aspect becomes particularly evident when treating electronic tunnelling [14].

Figure 3 displays the electron charge density along the molecular axis in the ground
state of H2 for internuclear spacing R¼ 0.8 and 1.4 a.u., as obtained from D¼ 3 Hund–
Mulliken wavefunction [38]. Circles show electron orbits in Bohr’s model. As shown in
Figure 4, the orbit locations for any R are actually very close to the maxima in the charge
density. This provides a satisfying link between the wave mechanical and large-D limit
Bohr model treatments of the H2 bond.

The ground state E(R) can be substantially improved by use of a simple interpolation
procedure (see Figure 9). We discuss this in Section 3. The present D!1 limit (Bohr
model) gives good results for other molecules; examples we include in this review are HeH,
He2, LiH, BeH, Li2, and the triatomic H3.

2.2. Bohr model picture of multielectron atoms

While Bohr’s model gives exact energies of one-electron atoms, when extended to the
helium atom it gave disappointing results (ionization energy 15% too high). There were
several further attempts to obtain better classical mechanical many-electron models,
relying on physical intuition. Parson [39] suggested that in many atoms the electrons
are arranged with cubic symmetry. Lewis [40] emphasized the importance of pairs and
octets of electrons. Kossel [41] found certain unusually stable groupings of electrons
in atoms, corresponding to the inert gases. Born [42] and Landé [43–47] demonstrated
stable octets of electrons and analysed the motion of the octets about certain points.

Figure 3. Distribution of the electron charge density in the ground state of H2 along the molecular
axis z, obtained from a Hund–Mulliken wavefunction [38]. The nuclei are fixed a distance R apart.
Circles are electron orbits in Bohr’s model.
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Langmuir postulated a set of rules for coupling of electrons in atoms [48]. Since in the
ground state the total angular momentum is zero, the momenta of an electron pair must be
equal and opposite. Subject to this requirement, Langmuir considered oscillatory motions
of electrons along semicircular orbits in the equatorial plane [48]. For helium, he obtained
an ionization energy (0.945 hartrees) close to the experimental value. Harcourt [49]
modified Bohr’s model for He so that the electrons could deviate from being 180� apart in
their orbits and obtained an accurate ground-state energy. Contemporary semiclassical
theory of electronic orbits in atoms has a sound mathematical foundation [50]. It has given
good results both for doubly excited Rydberg atoms and for frozen planetary states [51].
West, et al. [52] have also studied classical orbits for helium using the techniques of
Rydberg electronic wave packets.

Our new perspective on the Bohr model encourages looking into how it might work
for many-electron atoms. We consider here a simplistic approach, akin to Equation (2.9),
for the lowest S state configurations of atoms. In his 1913 model for a one-electron atom,
Bohr postulated circular electron orbits with radii determined by r¼ n/p (in atomic units),
with n the principal quantum number, p the momentum [29–31]. Then minimizing the
energy,

E ¼
1

2
p2 þ V ¼

1

2

n2

r2
�
Z

r
, ð2:11Þ

with Z the nuclear charge, gives E ¼ � 1
2Z

2=n2. By analogy, we might expect that for the
ground S states of an N-electron atom, the Bohr model energy function should be

E ¼
1

2

XN
i¼1

n2i
r2i
þ Vðr1, r2, . . . , rNÞ, ð2:12Þ

where ri(i¼ 1, . . . ,N ) is the distance from the electron i to the nucleus, ni is the principal
quantum number of electron i and V is the Coulombic potential energy. For N¼ 2,

Figure 4. Location of the peak (relative to the centre) in the ground state charge density of H2

molecule as a function of R. Curves were calculated from the Bohr model of Equation (2.9) and from
the Hund–Mulliken variational wavefunction with effective charge [38].
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this function indeed agrees with the united atom limit (R¼ 0) of Equation (2.9).

In Section 6, we show that Equation (2.12) can be obtained from an extended D-scaling

procedure. For now, just proceeding blithely, we assign the quantum numbers for each

electron using the familiar prescription for sequential filling of the K, L, M . . .

(n¼ 1, 2, 3, . . .) energy shells, with 2n2 the maximum occupation number of each shell.
Figure 5 shows the electron configurations obtained by minimizing Equation (2.12)

for neutral atoms with N¼ 2 to 6. These represent, at a modest level of approximation,

the fixed geometry that the electrons attain at the large-D limit. The electron locations

agree remarkably well with the radius of maximum radial charge density in atomic

shells and subshells, determined from D¼ 3 self-consistent-field calculations using the

Roothaan–Hartree–Fock (RHF) wavefunction taken from [53]. For the n¼ 1 shell, the

radii shown in Figure 5 are actually identical to the RHF most probable radii (0.569, 0.36,

0.26, 0, 21, 0.17, respectively). For the n¼ 2 shell, the Bohr result for Li (3.85) is much

larger than the RHF value (3.09), but for Be, B, and C the agreement with RHF data

(2.04, 1.53, 1.21, respectively) is good.
Another striking aspect of Figure 5 is that simply minimizing Equation (2.12) predicts

that in the n¼ 2 shell the valence electrons for Be, B, and C will be disposed in linear,

trigonal, or tetrahedral geometry, respectively. These configurations correspond to the sp,

sp2, and sp3 modes of hybridization of the s and p subshells. Championed by Pauling and

Slater, orbital hybridization is invoked in myriad discussions of chemical bonding [54–57].

Conventional treatments of hybridization, using D¼ 3 wave mechanics, need to call on

special approximations to obtain these canonical modes, so it is interesting that in the

Bohr model they appear without ado.
Figure 6 shows, for neutral atoms with N¼Z¼ 2 to 30, how much the ground state

energies found by minimizing Equation (2.12) deviate from accurate results of high-level

calculations (accurate atomic energies were obtained from Hartree–Fock energies of

[58–61] and correlation energies [62,63]). The accuracy of EBohr is much less good than

obtained from Hartree–Fock calculations [60–63]. That is to be expected for such

a simplistic model, but contrasts with the results of Figure 5. For N¼ 2, our procedure

is equivalent to Bohr’s model of He, in which the electrons revolve about the nucleus

in a common circular orbit. That model overestimates the He energy by nearly 6%.

For N42, as evident in Figure 5, our version defined by Equation (2.12) differs from

Bohr’s original model [64]; his continued to employ coplanar, concentric circular orbitals

and for Li and Be gave even poorer energy results [65]. Recently, Sergeev has examined

the behaviour of our version of EBohr(N,Z ) as N¼Z becomes very large [66]. He found

the functional form of the Z-dependence became similar to the Thomas–Fermi statistical

model [67]. He also demonstrated an enhanced minimization procedure. He noted that

the procedure usually used actually treats Equation (2.12) as if the electron vectors are in

3D space. When instead he did the minimization in successively larger-D spaces, he found

the electronic shells became increasingly symmetric, until at sufficiently large D each shell

forms a simplex, with all electrons in the same shell at the same distance from the

nucleus. That simplified the calculations and also, as seen in Figure 6, at large-N

increased the accuracy of EBohr by roughly twofold. For comparison, Figure 6 includes

results obtained from the Thomas–Fermi model and from Loeser’s approximate large-D

limit [68].
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Figure 5. Electron configurations obtained from Bohr model by minimizing Equation (2.12).
Distances in atomic units (1 a.u.¼ 0.529 Å).
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3. Chemical bond in Bohr model picture

From 1913 on, Bohr hoped to elucidate molecular as well as atomic electronic structures.
Figure 7, from an unpublished manuscript [69], displays the ‘figurations’ he considered for
H2 and other simple molecules. Even for H2, none of the various planetary-orbit models
examined during the ‘old quantum theory’ appeared able to account for chemical bonding.
Textbooks thus have long credited the first theoretical explanation of a covalent bond to
the approximate wave mechanical treatment of H2 in 1927 by Heitler and London [70].
We now find, however, that a simple extension of the original Bohr model actually
describes the potential energy curves for the lowest singlet and triplet states of H2 about
as well as the results of Heitler and London. The Bohr model also proves to work well for
other small diatomic molecules.

3.1. The hydrogen molecule

In his unpublished notes, referring to Figure 7, Bohr says ‘The model proposed for H2

seems to be the only possible equilibrium configuration of 2 kerns and 2 electrons (looking
apart from two atoms), in which the kerns are at rest’. However, the symmetric
configuration he considered is the minimum energy solution of Equation (2.9) only at
small internuclear distances. Figure 8 shows all possible stationary configurations.
Apparently, Bohr was unaware of the asymmetric configurations, displayed in our
Figure 8. Combining his solution (curve 1) at small R with an asymmetric one (curve 2)
that gives the minimum energy at larger R provides a fair first approximation to the

Figure 6. Deviation of ground state energy of multielectron atoms obtained from the Bohr model
of Equation (2.12) from the accurate high-level quantum mechanical result (accurate atomic
energies were obtained from Hartree–Fock energies of [58–61] and correlation energies [62,63]).
For comparison, data are shown also for the Hartree–Fock approximation [58–61], the Thomas–
Fermi statistical model [67], and Loeser’s approximate large-D limit [68]. Dashed curve shows
improved results for the Bohr model obtained by Sergeev [66].
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ground state potential energy over the full range of R. Arnold Sommerfeld, who in 1916
enhanced Bohr’s H atom model by treating elliptical orbits, space quantization, and
relativistic fine structure, had an apt premonition about the symmetric H2 model. In the
1923 edition of Sommerfeld’s ‘quantum theory almanac’, he comments that ‘Only a short
while ago. . . we were inclined to accept it. . . [but] nowadays we can take only a historical
interest in it. . . Thus the true model of the H2 molecule is still unknown. It will hardly be as
symmetrically built as the model exhibited [by Bohr in Figure 7].’

As depicted in Figure 1, the Bohr model for H2 assumes that the electrons move with
constant speed on circular orbits of radii �1¼ �2. The centres of each orbit lie on the
molecular axis z at positions z1¼�z2. The dihedral angle � between the planes containing
the molecular axis and the electrons is either 180� or zero, �¼� or �¼ 0. Thus, the pair of
electrons rotate synchronously, and the separation between them remains constant.
In Figure 8, the upper panel shows the four electron configurations that correspond to
extrema of the Bohr energy function of Equation (2.9). The lower panel plots the four
corresponding potential energy curves, E(R). Also shown (dots) are accurate results
obtained from high quality wave mechanical calculations for the singlet ground state,
1�þg and the lowest triplet state, 3�þu [36,37]. In the model, the three configurations 1, 2, 3
with the electrons on opposite sides of the internuclear axis (�¼�) are seen to correspond
to singlet states, whereas the other solution 4 with the electrons on the same side (�¼ 0)
corresponds to the triplet state. (The latter is a saddle point of Equation 2.9, the others are
minima.) At small internuclear distances, the symmetric configuration 1 originally
considered by Bohr agrees well with the accurate ground state quantum energy; at larger
R, however, this configuration climbs far above the ground state and ultimately dissociates
to the doubly ionized limit, 2Hþþ 2e. In contrast, the solution for the asymmetric
configuration 2 appears only for R41.20 and in the large R limit dissociates to two
H atoms. The solution for asymmetric configuration 3 exists only for R41.68 and climbs
steeply to dissociate to an ion pair, HþþH�. The asymmetric solution 4 exists for all R
and corresponds throughout to repulsive interaction of two H atoms.

Figure 7. Molecular configurations as sketched by Niels Bohr; from an unpublished manuscript
[69], intended as an appendix to his 1913 papers.

676 A. Svidzinsky et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
4
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



In the united atom limit R¼ 0, the configuration 1 turns into the �¼ 180� configuration
for the Bohr model of helium. The configuration 4 in this limit turns into the rigid triangle

configuration for the Langmuir model of helium, in which two electrons rotate in the same

direction in circular orbits in two parallel planes equidistant from the equatorial plane [34].
Both orbits in helium are classically unstable [52]. More various types of orbits like Bohr’s

and Langmuir’s orbits for the helium atom were found for the hydrogen molecule by
Lopez-Castillo [71].

The simplistic Bohr model provides surprisingly accurate energies for the ground

singlet state at large and small internuclear distances and for the triplet state over the
full range of R. Also, the model predicts the ground state is bound with an equilibrium

separation Re� 1.10 and gives the binding energy as EB� 0.100 a.u.¼ 2.73 eV.
The Heitler–London calculation, obtained from a two-term variational function, gives

Figure 8. Energy E(R) of H2 molecule for four electron configurations (top) as a function of
internuclear distance R calculated within the Bohr model (solid curves) and the accurate ground 1�þg
and first excited 3�þu state energy (dots) [36,37]. Unit of energy is 1 a.u.¼ 27.21 eV, and unit of
distance is the Bohr radius. Note the symmetric configuration 1 corresponds to Bohr’s sketch of H2

molecule in Figure 7.
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Re¼ 1.51 and EB¼ 3.14 eV [70], whereas the accurate results are Re¼ 1.401 and

EB¼ 4.745 eV [1,2]. For the triplet state, as seen in Figure 8, the Bohr model gives
remarkably close agreement with the accurate potential curve and is in fact much better

than the Heitler–London result, which, e.g., is 30% high at R¼ 2.
In order to emphasize how simple the Bohr model calculations are, in contrast to

solving the Schrödinger equation, we consider configuration 2 as an example. There

z1¼�z2¼ z, �¼�, and the extremum conditions @E/@z¼ 0 and @E/@�¼ 0 read

ZðR=2� zÞ

�2 þ ðR=2� zÞ2
� �3=2 þ z

4½�2 þ z2�3=2
�

ZðR=2þ zÞ

�2 þ ðR=2þ zÞ2
� �3=2 ¼ 0, ð3:1Þ

Z�

�2 þ ðR=2� zÞ2
� �3=2 þ Z�

�2 þ ðR=2þ zÞ2
� �3=2 � �

4½�2 þ z2�3=2
¼

1

�3
: ð3:2Þ

These are seen to be identical to classical equilibrium configurations under Newton’s

second law. Equation (3.1) specifies that the total Coulomb force on the electron along the

z-axis is equal to zero; Equation (3.2) specifies that the projection of the Coulomb force
toward the molecular axis equals the centrifugal force. At any fixed internuclear distance

R, these algebraic equations determine the constant values of � and z that describe the

electron trajectories. Substituting these values back into Equation (2.9) yields E(R).
Similar force equations pertain for the other extremum configurations.

Figure 9. Ground state potential energy E(R) of H2 molecule calculated from the interpolated Bohr
model (solid curve) and the accurate energy (dots) [36,37]. Insert shows E(R) with no 1/R term.
Curves 1 and 2 are obtained based on the quantization relative to the molecular axis (small R) and
the nearest nuclei (large R) respectively. Dashed line is the interpolation between two regions.
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We have found an easy way to improve significantly the Bohr model result for the

ground state E(R) of H2. His model, leading to Equation (2.9), assumes quantization of the

electron angular momentum relative to the molecular axis. As seen in Figure 8, this yields

quite accurate results for R up to nearly 1 a.u. but becomes much less good at larger

internuclear separation. At large R, however, each electron feels almost only the nearest

nuclear charge. Thus, at large R, we should find that quantization of the momentum

relative to the nearest nucleus, rather than to the molecular axis, should provide a better

description of the physics. This leads to replacing Equation (2.9) at large R by the

following expression,

E ¼
1

2

1

r2a1
þ

1

r2b2

� �
þ Vðra1, rb1, ra2, rb2, r12,RÞ: ð3:3Þ

For R42.77 a.u. this expression has a local minimum for the asymmetric configuration 2

of Figure 8. We plot in Figure 9 (insert, curve 2) the corresponding E(R), without the 1/R

term. The local minimum of Equation (3.3) disappears at R52.77 and the electrons

collapse into the opposite nuclei. Therefore, at R51 we apply Equation (2.9), with its

quantization relative to the molecular axis (insert, curve 1). At intermediate R, we

smoothly connect the R51 and R42.77 regions by a third-order interpolating polynomial

(dashed curve). Addition of the 1/R term then gives the final potential curve, plotted in

Figure 9. This interpolated version of the Bohr model indeed provides good agreement

with the accurate E(R) curve over the full range of R. In Section 4 we present a strategy

that avoids interpolation but likewise enhances accuracy by switching quantization from

molecular to atomic as R increases.
Another simple strategy, combining the large-R result for H2 with the exact E(R) for

the ground state Hþ2 molecule-ion, enables estimating potential energy curves for some H2

excited states. For small R, an excited electron (denoted 2) with principal quantum number

n2� 2 will mostly be far from its companion (with n1¼ 1) and both protons. Therefore,

the itinerant electron 2 feels an effective charge nearly equal to þ1, so its energy is well

approximated as hydrogenic, with EðH, n2Þ ¼ �1=2n
2
2. The inner electron 1 will feel almost

as if it is in a Hþ2 ion. Hence potential energy curves of such excited H2 states can be

approximated as

EðR;H2Þ ¼ E R;Hþ2 , n1 ¼ 1
	 


þ EðH, n2Þ ð3:4Þ

As shown in Figure 10, this yields a fairly accurate result for the 2s� state in the vicinity of its
first minimum and even a rough indication of the unusual double-well character. For the

3s� and 4s� states the results are better and remain accurate over a wide range of R.

3.2. Other simple diatomic molecules

By means of the same procedure leading to Equation (2.12), the rudimentary Bohr model

for H2 can be generalized to apply to � states of an N-electron diatomic molecule.

This gives

E ¼
1

2

XN
i¼1

n2i
�2i
þ Vðr1, r2, . . . , rN,RÞ, ð3:5Þ
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where the �i coordinates are replaced by ri when we desire to switch from molecular
to atomic quantization. As before, we seek configurations that deliver extrema of this
energy function, and incorporate Pauli exclusion by assigning the principal shell quantum
numbers ni in the usual way.

Figure 11 shows for HeH the ground state electron configuration and repulsive E(R)
curve obtained from Equation (3.5) with n1¼ n2¼ n3¼ 1. Here we find molecular
quantization remains appropriate even at large R, as the model dissociates properly to
HeþH. In order to correct for the error in the Bohr result for He, we reduce the effective
nuclear charge to Zeff

He ¼ 1:954 and thereby fit the correct dissociation limit. With this
adjustment, the Bohr model gives remarkably close agreement with the accurate potential
curve for HeH.

Figure 12 pertains to He2, another case for which the ground state potential curve is
repulsive. For simplicity, here we assumed a symmetrical collinear electron configuration
(depicted in the insert) and used momentum quantization relative to the nearest nucleus.
Then the Bohr energy function to be minimized becomes

Eðr1, r2,RÞ ¼
1

r21
þ

1

r22
�
2Z

r1
�
2Z

r2
�

2Z

Rþ r1
�

2Z

R� r2
þ Vee þ

Z2

R
, ð3:6Þ

where the electron–electron interactions are

Vee ¼
2

r1 þ r2
þ

2

Rþ r1 � r2
þ

1

Rþ 2r1
þ

1

R� 2r2
: ð3:7Þ

The E(R) curve thereby obtained, again with adjustment of the large-R asymptote to the
correct dissociation limit, agrees very closely with the accurate curve found from extensive
wave mechanical calculations.

Figure 10. Potential energy (solid curves) of the ground and a few excited states of H2 obtained from
the Bohr model with D-scaling analysis. Dots are the accurate energies [72]. The inserted figures on
the right hand side depict the two nuclei of charge Z and Bohr’s ‘planetary’ orbits for the electrons in
the 1�þg and 3�þu states (see also Figure 3). Dashed curves are from Heitler–London treatment [70].
Taken from [34].
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Figure 13 for LiH returns to treating a ground state that has chemical bonding. Here

we simplified by relegating the two inner shell electrons of Li to the configuration found in

Figure 5, so considered just the n¼ 2 outer electron of Li as involved in the bond with the

electron from H. Then we evaluated E(R) using interpolation (as for H2 in Figure 9)

between results obtained with quantization with respect to the molecular axis at small R

Figure 12. Ground state potential energy E(R) of He2 molecule calculated from the Bohr model
(solid curve) and compared with the accurate energy (dots) [74–76]. Insert shows the electron
configuration.

Figure 11. Ground state potential energy E(R) of HeH molecule for the shown electron
configuration, calculated from the Bohr model with n1¼ n2¼ n3¼ 1, Zeff

He ¼ 1:954 (solid curve)
and compared with the accurate ground state energy (dots) [73].
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and with respect to the nearest nucleus at large R. This ‘minimalist’ treatment again gives

fairly good agreement with the accurate potential curve. From the Bohr model perspective,

the essential difference from H2 arises just because in LiH the n¼ 2 electron contributed by

Li is much less strongly bound than the n¼ 1 electron from H. Consequently, for LiH the

bond energy is about twofold smaller than of H2 and the equilibrium bond length roughly

twice as large. As seen in Figure 14, we find that the same procedure applied to BeH also

gives good results.
Figure 15 displays a potential curve for Li2 obtained by another ‘minimalist’

stratagem. If we freeze or neglect the inner-shell electrons, the Bohr model Li2 becomes

equivalent to a pseudo-H2 state with n1¼ n2¼ n¼ 2. Rescaling coordinates in

Equation (3.3) via r! n2r and R! n2R then rescales the energy function by n�2.

Hence, the ground state potential curve of Li2 can be estimated from that for H2 using

a simple relation,

ELi2 ðRÞ � ELi2 ð1Þ ¼
1

n2
EH2
ðn2RÞ � EH2

ð1Þ
� �

: ð3:8Þ

As seen in Figure 15, the result agrees fairly well with the accurate potential curve.

Although the Bohr potential well is wider, its depth (1.10 eV) is quite close to the accurate

bond strength (1.05 eV).
As indicated by these examples, when applied with suitably judicious approxima-

tions, the Bohr model can readily provide surprisingly accurate potential energy curves.

More important, it offers a clear physical picture for prototypical chemical bonding,

a picture consistent with but much more elementary than that provided by wave

mechanics.

Figure 13. Electron configuration and the ground state energy E(R) of LiH molecule as a function of
internuclear distance R calculated from the interpolated Bohr model (solid curve) and compared
with the accurate energy (dots) [77].
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4. Constrained Bohr model approach

Here we introduce a method which augments the Bohr model with a constraint imposed by
quantum mechanics [81]. Thereby it avoids the arbitrariness of interpolation.
The constraint is as simple and intuitively appealing as the original Bohr model, yet
proves capable of giving quite accurate potential energy curves.

We first discuss the method as applied to H2, and then extend it to other molecules.
In Section 3.1, in presenting the interpolation expedient of Figure 9, we described why it is

Figure 14. Ground state potential energy E(R) of BeH molecule calculated from the interpolated
Bohr model (solid curve) and compared with the accurate energy (dots) [78]. Insert shows the
electron configuration at large R; only outer-shell Be electrons are displayed.

Figure 15. Ground state potential energy E(R) of Li2 molecule calculated from the interpolated
Bohr model (solid curve) and compared with the accurate energy (dots) [79,80].
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appropriate at small R to use momentum quantization with respect to the molecular axis

(MQ), but at large R to use quantization with respect to the nearest atomic nucleus (AQ).

The switch involves changing the centrifugal portion of the Bohr energy function from

MQ:
1

2

1

�21
þ

1

�22

� �
to AQ:

1

2

1

r21
þ

1

r22

� �
, ð4:1Þ

which converts Equation (2.9) to Equation (3.3); again, we use the notation of Figure 1.

The E(R) curves given by the MQ and AQ versions are compared in Figure 16. Whereas

the Bohr AQ version is accurate when the atoms are far apart, it fails as R decreases

because both electrons collapse onto the neighbouring nuclei. This occurs because the

neighbours exert increasing Coulombic attractions (�1/rb1 and �1/ra2 terms) but there are

no corresponding Bohr kinetic energy terms to prevent the collapse. We derive now, in

a simple algebraic form, the quantum constraint on electron locations that removes this

instability and enables the Bohr AQ version to be used over the full range of R.

4.1. Effective constraint potential for H2

Quantum mechanics describes the two electrons in H2 by a wavefunction, �(r1, r2).

Electron 1 is a charge cloud with a most probable radius r. Let �(r,R) be the quantum

potential between the electron 1 cloud centred at nucleus A and the neighbouring nucleus

B (or vice versa for electron 2). In the Bohr picture we treat the electron as a point particle

on a sphere of radius r centred about nucleus A. On the sphere surface, a subset ‘circle’ of

positions r satisfying �1/rb1¼�(r,R) will give the correct quantum interaction energy with

nucleus B. If we impose this as a constraint, and choose the electron location only from

this subset, then rb1 can never collapse to zero because �(r,R) is finite.

Figure 16. Potential energy curve for the ground state of the H2 obtained from the Bohr model using
molecular axis quantization (curve labelled MQ) or using quantization relative to the nearest nucleus
(curve AQ). Dots show results from accurate calculations [36,37].
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The effective potential �(r,R) can be derived from any two-electron wavefunction.

Here we consider just the prototype valence-bond and molecular orbital functions:

Heitler–London (HL) and Hund–Mulliken (HM), respectively [38,70]. The HL wavefunc-

tion is defined by

�HL ¼ að1Þbð2Þ � bð1Það2Þ, ð4:2Þ

where ‘þ’ pertains to the singlet state, ‘�’ to the triplet state, and

aðiÞ ¼

ffiffiffiffiffi
�3

�

s
expð��raiÞ, bðiÞ ¼

ffiffiffiffiffi
�3

�

s
expð��rbiÞ, ð4:3Þ

for i¼ 1, 2 are variational wavefunctions with parameter �. If we take a(1) for an isolated

hydrogen atom, then the variational energy is E¼ �2/2� �. This expression reduces to the

Bohr model energy function of the hydrogen atom if we identify �¼ 1/r, where r is the

radial distance from the nucleus. For molecules we will also use this assignment of � with r

the radial distance of an electron from its nearest nucleus.
The singlet state HM wavefunction is

�s
HM ¼ að1Þ þ bð1Þ½ �½að2Þ þ bð2Þ�, ð4:4Þ

For the triplet state, the HM and HL wavefunctions are the same, because the spatial

wavefunction must be antisymmetric to exchange of either the electrons or the protons,

�t
HM ¼ �t

HL ¼ að1Þbð2Þ � bð1Það2Þ: ð4:5Þ

Let us consider the interaction potential of electron 1 with nuclei A and B. Using the

HL wavefunction we find after simple transformations

� �
1

rb1
�

1

ra1

����
�����

� 
¼ �

1

1�
R
að1Þbð1Þdr1

� �2
Z

a2ð1Þ
1

rb1
dr1 �

Z
að1Þbð1Þ

1

rb1
dr1

Z
að2Þbð2Þdr2

�

�

Z
að1Þbð1Þ

1

ra1
dr1

Z
að2Þbð2Þdr2 þ

Z
a2ð1Þ

1

ra1
dr1

�
: ð4:6Þ

One can interpret the first two terms in Equation (4.6) as the interaction potential between

nucleus B and the electron cloud localized at nucleus A. The last two terms describe the

interaction potential between the electron cloud and nucleus A. Hence, �(r,R) is given by

the first two terms in Equation (4.6). Similar analysis applies to the HM wavefunction. As

a result, the HL and HM versions of the constraint function �(r,R) are given by

�HL ¼ �
f ðr,RÞ � Sðr,RÞgðr,RÞ

1� S2
, ð4:7Þ

�s
HM ¼ �

f ðr,RÞ þ gðr,RÞ

1þ S
, ð4:8Þ

with

f ðr,RÞ ¼

Z
a2ð1Þ

1

rb1
dr1 ¼

1

R
� exp �

2R

r

� �
1

r
þ

1

R

� �
,
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gðr,RÞ ¼

Z
að1Þbð1Þ

1

rb1
dr1 ¼

1

r
exp �

R

r

� �
1þ

R

r

� �
,

Sðr,RÞ ¼

Z
að1Þbð1Þdr1 ¼ exp �

R

r

� �
1þ

R

r
þ

R2

3r2

� �
:

When we apply the constrained Bohr model to H2, the resulting energy function is

Eðr,RÞ ¼
1

r2
�
2

r
þ 2�ðr,RÞ þ

1

r12
þ

1

R
: ð4:9Þ

This has an extremum when ra1¼ rb2¼ r and ra2¼ rb1. Figure 17 shows the corre-

sponding electron configurations for the ground singlet and triplet states; there, for the

singlet state

r12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2 � R2 þ

2

�2ðr,RÞ

s
,

and for the triplet state,

r12 ¼
1

R�2ðr,RÞ
�
r2

R
:

These are just geometric distances between the two electrons expressed in terms of R, r,

and rb1; the angle � is determined by ��2¼R2
þ r2� 2rR cos �.

Figure 18 shows, for both the singlet and triplet states, the potential energy curves,

E(R), obtained by minimization of the energy function, Equation (4.9), with respect to r.

There are no fitting parameters in our calculations. Over the full range of R, the HM

version (solid curves) and HL version (dotted curves) of the constrained Bohr model are

remarkably close to the accurate curves (heavy dots). For the ground state singlet state,

the bond dissociation energy obtained using the constraint potential is 4.99 eV from the

HM version, 4.50 eV, from the HL, as compared with 4.745 eV from accurate results.

(Since the Bohr model is not fully quantum mechanical, it is not subject to the variational

principle, so need not give either an upper or lower bound.) The constrained Bohr model

Figure 17. Bohr model electron configurations for the lowest singlet and triplet states of H2

molecule.
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actually gives much better results than conventional wave mechanics using the HM or HL

wavefunctions. The latter, even when enhanced by taking the nuclear charge as

a variational parameter, give the H2 bond strength as 3.43 eV from HM, 3.76 eV from

HL. Conventional variational calculations for H2 require wavefunctions with several

adjustable parameters as well as configuration interaction, in order to attain accuracy over

the full range of R comparable to that obtained from the constrained Bohr model.
Figure 19 presents an exploratory application of the constrained model to the first

excited 1�þg state of H2 (labelled E by Herzberg [83]). This state is of particular interest

because its potential energy curve has a double well structure. Such structures typically

arise from ‘avoided crossings’ of zero-order potential curves corresponding to different

electronic configurations. In a molecular orbital description for this state, at small R the

configuration is 1s�g2s�g, at large R it becomes �g1s�g2s. The Bohr model exhibits

distinct configurations, as seen in Figure 19: structure A at low R and B at large R. For the

A configuration, the energy function is

E ¼
1

2r21
þ

n2

2r23
þ V, ð4:10Þ

where n¼ 2 and the ri distances are defined in Figure 19 (insert). Minimizing this function

with the constraints

�
1

r2
¼ �sðr1,RÞ, �

1

r4
¼ �sðr3,RÞ

Figure 18. Potential energy curves for the ground 1�þg and first triplet state 3�þu of the H2 molecule.
Solid curves are obtained from the constrained Bohr model [81], using �HM effective constraint
potential, Equation (4.8), and dotted curves using �HL version, Equation (4.7). Dashed curves are
from HL variational treatment [82] with effective nuclear charge (Z¼ 1.166). Heavy dots show
results from accurate calculations [36,37].
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yields the potential energy curve A plotted in Figure 19. For the B configuration, at large

R the molecule separates into H� and Hþ ions; the Bohr energy function is

E ¼
1

r21
þ

n2

2r22
þ V, ð4:11Þ

with the constraint

�
1

r2
¼ �sðr1,RÞ.

Note that the energy function of Equation (4.11), from which we obtain curve B of

Figure 19, assumes quantization of both electrons relative to one of the nuclei with the

principle quantum number equal to one. This quantization allows formation of the H�

ion. At the same time, one of the electrons is also quantized relative to the opposite nucleus

with n¼ 2, a schizophrenic aspect exemplifying Bohr’s favourite concept of complemen-

tarity. Combining curves A and B produces a double well structure fairly similar to that

found in accurate calculations.
This result, for an excited state involving mixed configurations, encourages further

exploration of the constraint approach. The constraints applied in this case are surely not

optimal, as we merely used the �HL function from Equation (4.7) derived for the singlet

ground state rather than modifying the HL wavefunction.

4.2. Application to H3

Generalizing the constraint approach to ground states of molecules comprising several

hydrogen atoms is straightforward. If we consider electron 1 belonging to its nearest

Figure 19. Potential energy curve for first excited state of H2 with 1�þg symmetry; solid curve
obtained from constrained Bohr model [81], compared with heavy dots for accurate result [72]. Insert
depicts Bohr electron configurations, A for small R and B for large R; the B configuration dissociates
to Hþ and H�.
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nucleus and denote the distances from that electron to nuclei i as ri (i¼ 1, 2, . . .), then the
constraint equation reads

�
X
i41

1

ri
¼
X
i41

�iðr1,RiÞ, ð4:12Þ

where Ri is the separation between the nucleus 1 and nucleus i. The mutual spin
orientation of electrons 1 and i (belonging to the nucleus i) determines the choice of
a singlet or triplet �i in Equation (4.12).

In applying our model to the triatomic H3 molecule, we consider symmetrical linear
and triangular configurations, as shown in the inserts of Figures 20 and 21, with the
spacing between adjacent nuclei the same, equal to R. For the linear case, the symmetry
ensures that the Bohr model has the central electron at equal distances form the two
neighbouring nuclei. For this electron, since its position is fixed, there is no collapse and
thus no need for any constraint. As we only need to constrain the two outer electrons,
Equation (4.12) reduces to

�
1

r2
�

1

r3
¼ �sðr1,RÞ þ�tðr1, 2RÞ, ð4:13Þ

where ri are defined in the insert of Figure 20. Adjacent electrons in the linear ground state
have opposite spins, so require a singlet constraint potential. As the two outer electrons
have parallel spins, they require a triplet constraint. The Bohr energy function

E ¼
1

r21
þ

1

2r24
þ V ð4:14Þ

was minimized subject to Equation (4.13), using the HM version of the constraint
functions. As seen in Figure 20, this gave a potential energy curve in excellent agreement
with the accurate results.

Figure 20. Potential energy function and Bohr electron configuration for symmetric stretching of
linear H3 molecule; solid curve obtained from constrained Bohr model [81], dots from accurate
calculations [84,85].
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For the triangular case, we assume that electron 1 has spin opposite to those of
electrons 2 and 3. Symmetry dictates that electron 1 lies above the plane of the nuclei,
while electrons 2 and 3 lie below. Also, the projections on the plane of the positions of all

three electrons lie along bisectors of the equilateral triangle. Thus, the constraint potential
of Equation (4.12) for electron 1 reads

�
1

r2
¼ �sðr1,RÞ, ð4:15Þ

while that for electrons 2 and 3 reads

�
2

r4
¼ �sðr3,RÞ þ�tðr3,RÞ: ð4:16Þ

Minimization of the Bohr model energy function

E ¼
1

2r21
þ

1

r23
þ V ð4:17Þ

subject to these constraints again yields, as seen in Figure 21, a potential energy curve in
very good agreement with accurate results over the full range of R.

5. D-scaling transformations: link to Bohr model

In relating the Bohr model to the large-D limit of the Schrödinger equation in Section 2,
we introduced a D-dependent length scale and also incorporated into the probability
distribution a D-dependent portion of the Jacobian factor. Here we consider the D-scaling

Figure 21. Potential energy function and Bohr electron configuration for symmetric breathing
motion of equilateral triangular H3 molecule; solid curve obtained from constrained Bohr model
[81], dots from accurate calculations [84,85].
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procedure more closely, to provide a broader context for the Bohr model and to point out

generic aspects and important variants that may foster further developments.
As a prelude, in Figure 22 we note a pair of simple examples. Typical textbooks lead up

to the Bohr H atom by pointing out that classical mechanics would allow the electron to

spiral into the nucleus. Students are then confused (or should be!) to read a few pages later
that the ground state 1s wavefunction peaks at r¼ 0. Doesn’t that mean the electron is

most likely to be found at the nucleus? No! The instructor should make clear that in

curvilinear coordinates account must be taken of the non-uniform weighting of space
introduced by the Jacobian volume element, J. To evaluate the most probable geometry

requires a transformation to a new probability amplitude, �¼ J1/2�. The transformed

amplitude must vanish wherever J does, since � is finite everywhere. For the H atom in
any s-state, the radial wavefunction � does have its maximum at the origin, but

j�j2¼ r2j�j2 vanishes there and for the ground state has its maximum at the Bohr radius.
A kindred example, concerning electron distribution in the ground state of He (1s2 1S ),

has confused many professional chemists and physicists. They happily assert that the most

probable location of the two electrons has them 180� apart. Actually, the most probable

interelectron angle is �95�. This is just an angular analog to the H atom radial case.
The essential aspect is shown in Figure 22, for the model problem of two electrons moving

Figure 22. Role of Jacobian volume element, illustrated for H atom and for model problem of two
electrons on a rigid sphere. Effective potentials have infinite barriers (at r¼ 0 and at �¼ 0� and 180�)
corresponding to points at which the Jacobian vanishes. At such points, the wavefunction  for some
states (l¼ 0 or K¼ 0) can have maxima, but the corresponding Jacobian-weighted probability
density j�j2 must vanish. Taken from [86].
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on a rigid sphere [86]. The � for the K¼ 0 state peaks at 180�, but the probability density

j�j2¼ sin �j�j2 vanishes there and has its maximum at a much lower angle. The He atom

ground state is likewise ‘bent’.
Such consequences of Jacobian weightings may appear counterintuitive, but only if

attention is restricted to electrostatics. In He, the Coulombic repulsion does want the

electrons to be 180� apart, just as in the H atom Coulombic attraction impels the electron

to the nucleus. In both cases, the most probable geometry is actually governed by the

uncertainty principle, which induces zero-point kinetic energy that resists the electrostatic

preference. The shape as well as the size of atoms stems from quantum duality.
In D-scaling, the Jacobian weighting and its D-dependence has a prominent role,

examined further below as it becomes especially important when dealing with geometric

aspects of the Bohr model.

5.1. Interplay of Laplacians and Jacobians

The first step in D-scaling is to generalize the Schrödinger equation to D-dimensions. This

involves transforming the Laplacian operator and Jacobian volume element, from

a Cartesian space in which all vectors are endowed with D components, into appropriate

curvilinear coordinates. The potential energy retains its D¼ 3 form.

Hyperspherical coordinates are the natural choice for atoms. The coordinate transforma-

tion has a nested structure:

x1 ¼ r cos �1 sin �2 sin �3 	 	 	 sin �D�1,

x2 ¼ r sin �1 sin �2 sin �3 	 	 	 sin �D�1,

x3 ¼ r cos �2 sin �3 sin �4 	 	 	 sin �D�1,

x4 ¼ r cos �3 sin �4 sin �5 	 	 	 sin �D�1,

..

. ..
.

xj ¼ r cos �j�1 sin �j sin �jþ1 	 	 	 sin �D�1,

..

. ..
.

xD�1 ¼ r cos �D�2 sin �D�1,

xD ¼ r cos �D�1,

ð5:1Þ

r � 0, �0 ¼ 0, 0 
 �1 
 2�, 0 
 �j 
 � for j ¼ 2, 3, . . . ,D� 1,

where D is a positive integer and D� 2. The resulting Laplacian has the form

r2
D ¼ KD�1ðrÞ �

L2
D�1

r2
, ð5:2Þ

where

KD�1ðrÞ �
1

rD�1
@

@r
rD�1

@

@r

� �
: ð5:3Þ
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and the generalized angular momentum operator L2
D�1 is defined recursively by

L2
1 ¼ �

@2

@�21
,

L2
2 ¼ �

1

sin �2

@

@�2
sin �2

@

@�2
þ

L2
1

sin2 �2
,

..

. ..
.

L2
k ¼ �

1

sink�1 �k

@

@�k
sink�1 �k

@

@�k
þ

L2
k�1

sin2 �k
:

ð5:4Þ

This Laplacian was obtained more than a century ago [87]; detailed derivations are readily

available [14,88–91].
For a single particle subject to a central force potential,V(r), the Schrödinger equation is

�
1

2
r2
D þ VðrÞ

� �
�D ¼ E�D: ð5:5Þ

By virtue of the spherical symmetry, the radial and angular dependence may be separated by

�Dðr,�D�1Þ ¼ RDðrÞYð�D�1Þ, ð5:6Þ

where the angular factor, a hyperspherical harmonic [92], is an angular momentum

eigenfunction,

L2
D�1Yð�D�1Þ ¼ CYð�D�1Þ, ð5:7Þ

and C is the eigenvalue, to be determined. When evaluating Y(�D�1), we can fix r at any

non-zero value and chose any convenient magnitude for V(r); thus by setting V(r)¼ED,

we reduce Equation (5.5) to the Laplace equation, r2
D�D ¼ 0. Since near the origin (r¼ 0),

�D� r‘Y(�D�1), we find

r2
D r‘Yð�D�1Þ
� �

¼ ‘ð‘þD� 2Þ � C½ �r‘�2Yð�D�1Þ ¼ 0, ð5:8Þ

and thus C¼ ‘(‘þD� 2), with ‘¼ 0, 1, 2, . . . . The radial part of the Hamiltonian

therefore is given by

HD ¼ �
1

2
KD�1ðrÞ þ

‘ð‘þD� 2Þ

2r2
þ VðrÞ: ð5:9Þ

This is simplified further by �D¼ r(D�1)/2RD(r), incorporating the square root of the radial

part of the Jacobian factor, JD¼ rD�1 sinD�2�. The corresponding equation for the

probability amplitude is

�
1

2

@2

@r2
þ

�ð�þ 1Þ

2r2
þ VðrÞ

� �
�D ¼ ED�D, ð5:10Þ

where

� ¼ ‘þ
1

2
ðD� 3Þ: ð5:11Þ
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The net result, for any central force potential, is seen to have the same form as that for
D¼ 3, but in the centrifugal term the orbital angular momentum of Equation (5.10) has
acquired a D-dependent increment. There is thus an inter-dimensional degeneracy: an
increase in the spatial dimension by two (D!Dþ 2) is equivalent to adding one quantum
of orbital angular momentum [93].

For the H atom, with V(r)¼ 1/r, the contribution of orbital momentum results in
increasing the principal quantum number by the same increment,

n! nþ ðD� 3Þ=2: ð5:12Þ

By use of these transcriptions for n and ‘, all properties of the H atom in D-dimensions can
be obtained simply from those for D¼ 3.

For two-electron atoms such as He, in S states the D-dimensional Hamiltonian can be
set-up in a fashion analogous to that for the H atom. It likewise can be cast in the same
form as that for D¼ 3, with the addition of a scalar centrifugal potential which contains
the sole dependence on D as a quadratic polynomial. This is a key theorem, valid for S
states of any N-body system [94]. For helium-like atoms, the S-state wavefunction depends
only on the electron–nucleus radii r1 and r2 and the angle � between these radii. Table 1
summarizes results for the Laplacian and kindred quantities. Note that among the D� 1
angles on which the angular momentum operator L2

D�1 depends, only � is non-separable,
since it is the only angle that appears in the kinetic and potential energy. Hence, L2

D�2 will
be a constant of the motion and so can be replaced by its eigenvalue, L(LþD� 3), which
vanishes for S-states.

If the probability amplitude is defined by �D ¼ J 1=2
D �D, incorporating the full

Jacobian factor, the corresponding Schrödinger equation is

ðTþUþ VÞ�D ¼ ED�D, ð5:13Þ

where derivatives appear only in

T ¼ �
1

2

@2

@r21
þ
@2

@r22
þ

1

r21
þ

1

r22

� �
@2

@�2

� �
: ð5:14Þ

Because, by construction, the Jacobian associated with this �D is simply unity, T takes
a quasi-Cartesian form, so contains only second derivatives. The centrifugal term U is
given in Table 1. The potential V contains the familiar Coulombic electron–nucleus

Table 1. Dimension dependent terms for H and He. All quantities in atomic
units, with distances in Bohr units, energies in hartree.

Quantity H atom He atom, S states

r2
D KD�1ðrÞ � ðL

2
D�1Þ=r

2
P

i

	
KD�1ðriÞ �

L2
D�1

r2
i



L2
D�1 ‘(‘þD� 2) � 1

sinD�2 �
@
@� ðsin

D�2 �Þ @@� þ
L2
D�2

sin2 �

JD rD�1 sinD�2� ðr1r2Þ
D�1 sinD�2 �

U �ð�þ1Þ
2r2

1
2

	
1
r2
1

þ 1
r2
2


�
� 1

4þ
�ð�þ1Þ

sin2 �

�
� ‘þ D�3

2
D�4
2
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attraction and electron–electron repulsion. This form, although unconventional for

electronic structure studies, is customary in molecular spectroscopy (with UþV replaced

by a vibrational potential).
Another convenient form for the Schrödinger equation can be obtained [94] by

factoring the Jacobian as JD¼ J3JD�3, so that

J3 ¼ r21r
2
2 sin � and JD�3 ¼ ðr1r2 sin �Þ

D�3: ð5:15Þ

Then the transformation �D ¼ J�1=2D�3 �D yields again Equation (5.13), but the derivative

terms become

T ¼ �
1

2
K2ðr1Þ þ K2ðr2Þ þ L2

2ð�Þ
� �

, ð5:16Þ

and the centrifugal term becomes

U ¼
1

2

1

r21
þ

1

r22

� �
D� 3

2

� �2
1

sin2 �
: ð5:17Þ

The Schrödinger equation thus is the same as for D¼ 3, except for the addition of the

D-dependent centrifugal potential, and now the Jacobian for the j�Dj
2 function is J3.

This is the preferred form for calculations employing conventional variational methods.

It allows any existing computer code to be extended to D dimensions simply by adding the

matrix elements for the centrifugal potential of Equation (5.17).
In general, a transformation �D¼	�D, recasts the Laplacian via 	�1r2	, giving a

Schrödinger equation like Equation (5.13) but altering the form of T and U as well as the

Jacobian associated with the probability amplitude. In this context, the choice that led to

the Bohr model, as presented in Section 2.1, is unorthodox but remarkably efficient.

It takes 	 ¼ J�1=2r with Jr merely the radial portion of the Jacobian and retains the D¼ 3

form for the angular portions of both the Laplacian and Jacobian. This fulfills the

usual objectives of simplifying r2�D and rendering the Jacobian associated with �D

independent of D. Moreover, it confines the explicit D-dependence of the Hamiltonian

to the centrifugal term, which takes on the simple Bohr form

Uðr1, r2Þ ¼
1

2

1

r21
þ

1

r22

� �
�þ

1

2

� �
�þ

3

2

� �
, ð5:18Þ

for the He S-states, with �¼ (D� 4)/2, and thereby is freed from the awkward 1/sin2�
factor (cf. Table 1). However, as discussed in Section 5.3, this has an important

consequence, presaged in Figure 22. The large-D limit obtained by minimizing UþV using

Equation (5.18) will give �m¼ 180�; to obtain a �m that approximates the D¼ 3

interelectron angle, it is necessary to include in the 	-transformation the angular portion

of the Jacobian.

Hypercylindrical coordinates are a natural choice for diatomic molecules [35]. These

comprise a linear coordinate z orthogonal to a (D� 1) subspace. The subspace is specified

by spherical coordinates: �, the radius of the (D� 1) hypersphere, and �D�2, a set of

(D� 2) angles. The coordinate transformation thus is nearly like Equation (5.1), except

that x1! z and r! � while in the angle indices (D� 1)! (D� 2). Table 2 summarizes
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the Laplacian and other D-dependent quantities for the one- and two-electron homopolar
diatomics Hþ2 and H2. The format enables easy comparison with those for H and He atoms
in Table 1. For the molecules, the nuclei are located on the z-axis at �R/2 and þR/2,
respectively. In Hþ2 the Coulombic interactions depend only on R and (�, z), the pair of
coordinates that locate the lone electron. In H2, the interaction involves five electronic
coordinates: (�1, z1) and (�2, z2) and the dihedral angle � between the pair of planes that
contain the electrons and the molecular axis. The angular momentum operator L2

D�2 can
be replaced by its eigenvalue in the case of Hþ2 , since all of the D� 2 angles are separable,
including the azimuthal angle � which exists for D¼ 3. The corresponding quantum
number, denoted by jmj ¼ 0, 1, 2, . . . , is the magnitude of the projection of the orbital
angular momentum on the linear axis z. The L2

D�2 operator is not a constant of motion
in the case of H2, since the dihedral angle � is not separable. The other angles are all
separable, however. As with the He atom, we need only step down by D!D� 1 to reach
an operator that is constant, namely L2

D�3, with eigenvalue jmj(jmj þD� 4).
Included in Table 2 are the expressions for the centrifugal potentials obtained by

incorporating the square root of the full Jacobian into the probability amplitude. Our
discussion above of variants that arise when less than the full Jacobian is used applies as
well to molecules. In particular, for H2, if only the radial Jacobian factor is tucked into �D,
the Bohr model expression for U(�1, �2) is obtained. Analogous to Equation (5.18), it again
depends quadratically on D but is independent of the dihedral angle. Comparison of
Table 2 with Table 1 exhibits correspondences with the united atoms (Hþ2 ! Heþ,
H2!He), including systematic aspects of switching between spherical and cylindrical
coordinates.

Hartree–Fock version since the correlation energy is defined as the error in the Hartree–
Fock (HF) approximation, it is often of interest to compare D-scaling results with the HF
version [95,96]. As with the analogous mean field approximation in statistical mechanics,
the error in a HF treatment is expected to diminish as D increases. This is because
fluctuations decrease in proportion to D�1/2, as readily shown for the H atom. However,
whereas the mean field approximation for critical exponents of phase transitions becomes
exact for sufficiently large D, for the HF approximation the correlation energy (CE )
remains non-zero and relatively large even for D!1. As a fraction of the total energy,
the CE for the He atom varies from 2.3% at the D! 1 limit to 1.5% for D¼ 3 to 0.99%
at the D!1 limit.

Table 2. D-dependent terms for Hþ2 and H2. All quantities in atomic units, with
distances in Bohr units, energies in hartree.

Quantity Hþ2 molecule H2 molecule, � states

r2
D KD�2ð�Þ þ

@2

@z2
�

L2
D�2

�2

P
i

	
KD�2ð�iÞ þ

@2

@z2
i



�
	

1
�2
1

þ 1
�2
2



L2
D�2

L2
D�2 jmj(jmj þD� 3) 1

sinD�3 �
@
@�

	
sinD�3 � @

@�



�

L2
D�3

sin2 �

JD �D�2(sin �)D�3 ð�1�2Þ
D�2
ðsin�ÞD�3

U �ð�þ1Þ
2�2

1
2

	
1
�2
1

þ 1
�2
2


�
� 1

4þ
�ð�þ1Þ

sin2 �

�
� jmj þ D�4

2 jmj þ D�5
2
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The origin of this residual HF error at the large-D limit is another Jacobian effect.

The HF wavefunction, constructed as a product of one-electron orbitals, lacks any explicit

dependence on the angle between the electron radii. Hence this angle enters only in the

Jacobian volume element, which contains sinD�2� in hyperspherical coordinates and

sinD�3� in hypercylindical coordinates. Therefore, as D!1, the angle becomes fixed

at 90�. That constraint does not allow the HF method to find the correct minimum of

the effective potential, UþV, at the large-D limit. For instance, this limit for the ground

state of He has �m¼ 95.3�; the deviation from 90� is a direct measure of the correlation

energy.
Figure 23 displays the variation of cos �m and the correlation energy with 1/Z for the

ground S states of two-electron atoms. The interelectron angle, found by minimizing

UþV at the large-D limit [18,97–99], is given by

�cos �m ¼ x2 þ xðx2 þ 2Þ1=2 ¼ 2�5=2
þ 2�6
2 þ 	 	 	 , ð5:19Þ

Figure 23. For two-electron atom ground states, variation with reciprocal of nuclear charge, 1/Z, of
(a) cosine of most probable interelectron angle �m for large-D limit and (b) correlation energy �ED

for D¼ 3 and D!1, as a percentage of the total electronic energy.
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with x¼ 
/8 and 
¼ 1/Z. Expansions in 
 for the correlation energy, �ED ¼ ED � EHF
D ,

are given in [100]. As Z increases, �m moves closer to 90�, and the correlation energy
decreases, reflecting the diminishing importance of electron–electron repulsion relative to
attraction of the electrons to the nucleus.

5.2. Variant scalings to tame D-singularities

The next, key step is to transform to a suitably scaled space to remove the major, generic
D-dependence of the quantity to be determined. Usually the scaled quantity can be evaluated
at one or more special D-values, such as D!1, where the computation is often easy.
Then an approximation for D¼ 3 can be obtained by relating it to the special D-value(s).

Here we consider chiefly electronic energies. The hydrogen atom again serves as a guide
[14,101,102]. By means of the transcription provided by Equation (5.12), we find that in
D-dimensions the ground state (n¼ 1, l¼ 0) wavefunction and energy are

�oðrÞ ¼ exp �
2r

D� 1

� �
, Eo ¼ �

2

ðD� 1Þ2
: ð5:20Þ

The D-dependence is drastic: when D! 1 the atom implodes and when D!1 it falls
apart. Between these limits, as D is decreased, the atom shrinks in size and binds its
electron more tightly, whereas as D is increased, the atom expands and loosens its electron.
We want to remove or moderate the D-dependence by introducing distance and energy
scalings, chosen to have no effect at D¼ 3.

As seen above, the centrifugal portion of the Laplacian grows quadratically with D, so
pushes the atom apart. Hence, in general, the scaling needs to divide Laplacians by factors
quadratic in D, equivalent to scaling r as D2 as D!1, in order to obtain a finite limit.
In contrast, at low D the attractive Coulomb terms collapse the atom because they are no
longer inhibited by centrifugal barriers. To tame the D! 1 singularity thus requires
multiplication by (D� 1), which gives

lim
D!1

D� 1

2r
¼ �ðrÞ, ð5:21Þ

and the delta function potential yields a finite ground state energy.
Most often, the scalings needed to render the low-D and large-D limits finite have been

considered independently of each other. The commonly used version termed hydrogenic
scaling takes the distance unit proportional to the square of �¼ (D� 1)/2 in dealing with
the large-D regime, but instead takes the distance unit linear in � when treating the low-D
region. For applications to atoms, this inconsistency does not matter when computing
the energy (proportional to ��2 in both regimes), since that involves averages over the
electronic coordinates and the scaling factors for distance then cancel out.

However, in treating properties of atoms or molecules that involve a length scale that
is not integrated out, we need a different scaling scheme. The simplest molecule, Hþ2 ,
exemplifies this. In the Born–Oppenheimer approximation, the electronic energy depends
parametrically on the internuclear distance, R. Use of hydrogenic scaling, which scales R
differently for the D!1 and D! 1 limits, makes the electronic energy curves ED(R)
incommensurate in those limits. An unwelcome consequence became apparent in a study
of Hþ2 and H2 molecules that used the same hydrogenic scaling employed for atoms [35].
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With that scaling, the united atom (R! 0: Heþ) and separated atom (R!1: HþHþ)

limits are both correct. Also, the electronic energy for D!1, determined as usual from

the global minimum of the centrifugal plus Coulombic terms, but without the nuclear

repulsion (1/R) term, varies smoothly between these limits. However, when the nuclear

repulsion is added, to obtain the molecular potential energy curve, E(R), the net interaction

is repulsive. Thus, at least with hydrogenic scaling, for these molecules the combined

effect of the centrifugal and nuclear repulsion precludes chemical bonding as D!1.
A simple cure is provided by adopting a procedure termed uniform scaling, proposed

by Loeser [101,102]. This retains the energy scaling as ��2, but makes the distance unit

proportional to D(D� 1)/6 for all D. This distance scale factor interpolates smoothly

between the hydrogenic dependence, proportional to D2 at large-D and to (D� 1) at

low-D, and reduces to unity at D¼ 3. As well as reconciling the dimensional limits, use of

uniform scaling brings a major part of the chemical bonding contributions into both the

large-D and low-D limits.
Figure 24 illustrates for Hþ2 the taming of D-dependence provided by uniform scaling

[14]. The unscaled internuclear distance R is related to RH and RU, the large-D hydrogenic

and the uniform scaled versions, by

R ¼
D� 1

2

� �2

RH ¼
DðD� 1Þ

6
RU: ð5:22Þ

Figure 24. Electronic energy of ground-state Hþ2 (in units of ��2 hartrees) as a function of �¼ 1/D
for fixed values of scaled internuclear distance, RH (dashed curves) or RU (solid curves), defined in
Equation (5.22). For D¼ 3, the scalings reduce to unity; thus curves are labelled simply by unscaled
R (bohr units). From [14].
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The energy ED as a function of RH (shown as dashed curves) varies strongly with �¼ 1/D.

In particular, as D! 1 the energy descends to the united atom limit (R! 0) for all values

of RH. This does not happen when the energy is expressed instead as a function of RU

(solid curves) because the uniform scaling incorporates the correct limiting behaviour.

With uniform scaling, the electronic energy also lies lower at the D!1 limit. This offsets

enough of the nuclear repulsion to enable the large-D limit to provide a qualitatively good

approximation to the molecular potential energy curve [35]. Also, ED(RU) becomes

approximately linear in 1/D, thereby facilitating dimensional interpolation.
Figure 25 shows potential curves obtained for Hþ2 by adding the nuclear repulsion, 1/R,

to the electronic energies evaluated with uniform scaling for the D! 1 (dotted) and

D!1 (dashed) limits; both now exhibit bonding. Also shown is the approximation for

D¼ 3 (dot-dashed) provided by interpolating linearly in 1/D between the limits via

E3ðRÞ �
1

3
Eu
1 ðRÞ þ

2

3
Eu
1ðRÞ: ð5:23Þ

This blithe interpolation comes close to the accurate D¼ 3 results (heavy dots), for both

the bond dissociation energy and bond length. Further analysis finds that for Hþ2 near

its equilibrium bond length, the dimension dependence of the ground-state electronic

energy is dominated by the singularities at D! 1, congruent second and first order poles.

These poles are generic for Coulombic potentials, as they result from particle coalescences.

Other examples likewise confirm the inference from Hþ2 of the virtue of incorporating these

low-D features in a commensurate way, as accomplished by uniform scaling.
Another drawback of the hydrogenic scaling originally used is that the energy

expressions obtained for excited atomic states collapsed to the ground state as D!1.

Figure 25. Dimension interpolation for Hþ2 . Plotted are D! 1 (dotted curve) and D!1 limit
(dashed curve), the interpolated values (dot-dashed) obtained from Equation (5.23) and heavy dots
from accurate D¼ 3 calculations. Diamond on large-D limit curve marks symmetry breaking point;
for R4ð9=8Þ

ffiffiffi
3
p

the electron lies off-centre. Taken from [101,102].
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The cure for this, as shown by van der Merve [97–99], is to introduce semiclassical

quantization into the large-D limit. That supplies the appropriate principal quantum
numbers, ni, as in Equation (2.12), and thus ensures that the energies correspond to excited

states. We consider another way to do this in Section 6.

5.3. Bohr model contrasted with other large-D limits

The perspective offered by our discussion of basic D-scaling makes more striking the

effectiveness of the Bohr model. Its use of just hydrogenic rather than uniform scaling
would be expected to handicap treatment of chemical bonding. Yet, for H2 that evidently

is offset by its unorthodox suppression of the 1/sin2� angular factor in U, the centrifugal

term (Table 2). As noted in Section 2, the angular dependence of U fosters interelectron
angles near 90�. That competes with the Coulombic potential V, wherein electron–electron

repulsion fosters angles approaching 180�. In the Bohr model, omission of the angular
portion of the Jacobian weighting allows �m¼ 180�, minimizing the 1/r12 electron–electron

repulsion, and thereby contributes to chemical bonding.
In contrast, the orthodox large-D treatment, which includes the full Jacobian

weighting, has the 1/sin2� factor in U and the sinD�3� factor in the Jacobian strongly
shifts �m towards 90�. This enhances, indeed much overweights, the 1/r12 repulsion and

thereby inhibits chemical bonding. Thus, as seen in Sections 2 and 3, the Bohr model

variant of D-scaling, which retains the D¼ 3 form of the angular portion of the Jacobian
and Laplacian, enables the large-D limit to provide a much better zero-order

approximation for H2 at D¼ 3 than does the orthodox ‘Full-J’ scaling.
However, for the He atom the Bohr variant suffers from a major disadvantage,

exhibited in Table 3. In the large-D limit Bohr scaling makes the interelectron angle

Table 3. Energy and geometry for He ground state.

Method �Em (a.u.) rm (a0) �m (�)

D!1 limit
‘Full-J’ 2.7378 0.6069 95.3
Hartree–Fock 2.7108 0.6074 90.0
Bohr Model 3.0625 0.5714 180.0
D¼ 3 results
Tatum1 2.9037 0.60 94.6
Pekeris2 2.9037 0.620 94.3
CH3 2.9037 0.6047 100.0
Chin4 2.878 0.5791 97.8
Hartree–Fock5 2.8617 0.569 90.0

1From [103], where a 39-term Hylleraas wavefunction was used. Note: as ab initio
calculations do not customarily report the most probable interelectron angle �m,
we have derived nominal values either via �m¼ cos�1hcos �i or from other
expectation values. As �m is somewhat sensitive to the shape of the angular
distribution, the nominal values may be uncertain by several degrees.
2From [104]; angle calculated from �m� cos�1(hr1 	 r2i/hr1i

2).
3From [105], where an 18-term wavefunction was used.
4From [106], which used a 2-term wavefunction.
5Wavefunction and energy taken from [53].
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�m¼ 180� for the ground S-state, whereas ‘Full-J’ scaling gives �m¼ 95.3�, close to the

result from high-quality ab initio calculations for the D¼ 3 atom. This consequence of the

choice of Jacobian weighting, anticipated in Figure 22, is illustrated further with contour

maps displayed in Figure 26 for a modest D¼ 3 variational wavefunction [106]. The Bohr

model result indeed corresponds to the crest of the wavefunction, �; but the most probable

value of � corresponds to the maximum of the probability amplitude, j�j2¼ Jj�j2, which

for D¼ 3 is proportional to sin �j�j2.
These comparisons suggest a simple rule. To select a scaling which enables the simple

large-D limit to provide a good approximation for D¼ 3, be guided by the form of the

D¼ 3 Jacobian. For H2, since J3¼ �1�2 has no angle dependence, use a scaling that does

not include the angular part of JD� sinD�3�. For He, since J3 ¼ r21r
2
2 sin � does have

angle dependence, use a scaling that does include the angular part of the Jacobian,

JD� sinD�2�. This also suggests that improvements may be sought by taking the liberty

Figure 26. Contour maps of Jacobian weighted density. (a) Bohr model weighting, r21r
2
2j�j

2;
cross indicates the most probable radii and angle rBm ¼ 0:5973, �Bm ¼ 180�. (b) Full Jacobian result,
r21r

2
2 sin �j�j

2; cross indicates the most probable radii and angle rFm ¼ 0:5791, �Fm ¼ 97:85�. The � used
is from [106].
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to modify the Jacobian. We consider a step in that direction in Section 6 and discuss other

prospects in Section 8.

6. Quantum-number D-scaling for multielectron atoms

A straightforward D-scaling approach for excited electronic states of atoms associates

them with vibrational and rotational modes of the electrons with respect to the frozen

geometry of the D!1 limit. This approach has elucidated pseudo-molecular aspects of

intrashell excited states of two-electron atoms [86,97–99,107] and shown how to exploit

exact and approximate interdimensional degeneracies [107,108]. Highly accurate calcula-

tions for several excited two-electron atomic states have also been made by developing 1/D

perturbation series to high order [109,110].
Here we present an unconventional method [111] that provides useful accuracy for

some states yet requires only simple zero-order calculations and can be readily applied to

excited states of multielectron atoms. It involves incorporating the principal and orbital

angular momentum quantum numbers in the D-scaling parameters.

6.1. Introducing n and L as scaling parameters

The strategy is to modify the Laplacian and Jacobian for He S-states, as given in Table 1.

As proposed in [111], the D� 1 and D� 2 indices are replaced with generalized

parameters:

�1 ¼ n1ðD� 1Þ, ð6:1aÞ

�2 ¼ n2ðD� 1Þ, ð6:1bÞ

� ¼ LðD� 2Þ, ð6:1cÞ

where ni and L are finite positive integers; thus � i and � will tend to infinity along

with D. Introducing the parameters ni and L provides additional degrees of freedom in

the final energy expression. This parametrization can be interpreted as the cardinality of

a space, larger than D dimensions, which includes the energy levels of the physical

system.
Then

r2
1 þ r

2
2 ¼ K�1ðr1Þ þ K�2ðr2Þ þ

1

r21
þ

1

r22

� �
L2
�, ð6:2Þ

where

K�ðrÞ ¼
1

r�
@

@r
r�
@

@r
ð6:3aÞ

L2
� ¼

1

sin� �

@

@�
sin� �

@

@�
: ð6:3bÞ

The corresponding Jacobian is J��� ¼ r�11 r
�2
2 sin� �. When the new Laplacian of

Equation (6.2) acts on a wavefunction of the form �D¼ J�1/2�D, we obtain via the
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usual hydrogenic scaling in the D!1 limit a simple energy expression

Eðn1, n2,LÞ ¼
1

2

n21
r21
þ
n22
r22

� �
þ
L2

2

1

r21
þ

1

r22

� �
cot2 � þ Vðr1, r2, �Þ: ð6:4Þ

This offers a simple means to obtain atomic excited states by associating ni as the principal

quantum number for electron i and assigning L in an appropriate fashion. A nominal

assignment was proposed [111], L¼ ‘1þ ‘2, simply the sum of the individual hydrogenic

orbital angular momentum quantum numbers. That is the maximum among the set of

values arising from vector addition: [j‘1� ‘2j, j‘1� ‘2þ 1j, . . . , j‘1þ ‘2j].
Energies obtained in this way by minimizing Equation (6.4) were presented in [111] for

several S, P, and D excited states of He. An analogous treatment for some excited states of

Li and Be was also given. Agreement with conventional D¼ 3 electronic structure results

was good, typically better than 1%, even without recourse to adding any 1/D perturbation

terms.
However, such use of Equation (6.4) and kindred results requires a serious amendment,

only recognized in preparing this review. First, note that the energy, E¼ESþEL,

separates into terms present for S-states (L¼ 0),

ESðn1, n2Þ ¼
1

2

n21
r21
þ
n22
r22

� �
þ Vðr1, r2, �Þ, ð6:50Þ

plus terms that enter for non-S states (L40),

ELðLÞ ¼
L2

2

1

r21
þ

1

r22

� �
cot2 �: ð6:60Þ

Equation (6.50) indeed corresponds to the form obtained for a Bohr model using his

momentum quantization rule ( p¼ n/r), as noted in Equation (2.12). But this is not

consistent with use of the full Jacobian in deriving Equation (6.4); for the ground S-state

that requires the centrifugal term to contain a factor of 1/sin2�, as seen in Table 1.

The source of this inconsistency is readily traced to the definition of � adopted in

Equation (6.1). In order to obtain the correct Hamiltonian for the ground S-state (with

n1¼ n2¼ 1,L¼ 0), we must have �¼D� 2 rather than �¼ 0. To accommodate this

constraint, we instead define �¼ �0(D� 2), where �0¼ 1þ�L and all dependence

on angular momentum quantum number(s) appears in �L, yet to be specified.

In Equation (6.4) this merely replaces L2 with (1þ�L)
2 but the ES and EL terms become

ESðn1, n2Þ ¼
1

2

n21
r21
þ
n22
r22

� �
þ
1

2

1

r21
þ

1

r22

� �
cot2 � þ Vðr1, r2, �, Þ ð6:5Þ

and

ELðLÞ ¼
�Lð�L þ 2Þ

2

1

r21
þ

1

r22

� �
cot2 �: ð6:6Þ

As discussed below, in Section 6.2, our amended definition of � is essential to model the

most probable interelectron angle, �m for S-states and thereby enable realistic assessment

of electron–electron correlation.
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At present, treatment of non-S states by Equation (6.4) remains in limbo because

a satisfactory way to specify �L has not been found. The comparisons with D¼ 3 results

in [111] proved misleading. For most of the non-S states considered, �m is not far from

90�; thus, in Equations (6.4) and (6.6) the factor cot2� is so close to zero that ES�EL.

Accordingly, the value adopted for �L has little effect for such states. Also, the choice

(�0¼L) originally made for � in Equation (6.1) led in [111] to misassigning S states as

P states. A useful choice for �L would require specifying more quantum numbers than

the total angular momentum alone. Further efforts to extend quantum number

D-scaling to non-S states may find guidance from an extensive analysis by Dunn

and Watson of the large-D limit of higher angular momentum states of two electron

atoms [108] as well as insightful models that restrict the electrons to the surface of

a sphere [112].

6.2. Generic geometric aspects of excited electronic states

As emphasized in Section 5.3, minimizing the energy expression for the Bohr model for

He gives �¼ 180� for all S-states. However, as illustrated in Figure 26 and Table 3, for

the ground S-state the most probable interelectron angle, �m, occurs only a few degrees

above 90�. In Figure 27 we contrast the variation of �m for two species of excited states:

(a) Rydberg states, with n1 n2, for which �m declines towards 90� with increasing

excitation, and (b) intrashell states, with n1¼ n2, for which �m climbs towards 180�.

In Figure 28 we show the corresponding energies and most probable radii. For the

Rydberg states (Figure 28a), when n2 substantially exceeds n1, the corresponding electron

radii become very different (since r� n2), so their angular correlation fades away and

�m! 90�, the uncorrelated value. The outer electron then sees a screened nucleus with

charge near Z� 1, so as n2 grows the energy rapidly approaches

E!�
1

2

Z2

n21
þ
ðZ� 1Þ2

n22

� �
, ð6:7Þ

a double hydrogenic limit for which D-scaling by design becomes exact. For intrashell

states (Figure 28b), with increasing excitation, both electrons retreat further from the

nucleus and as their radii are on average equal, their angular correlation becomes

increasingly pronounced and �m! 180�, the maximally correlated value. In intrashell

states the electronic distribution thus exhibits marked pseudo-molecular character with

only vestigial hydrogenic traces.

7. Other Bohr-style applications

The topics we now consider involve electronic structure subject to potentials that

differ markedly from purely Coulombic interactions. These include the interaction of

atoms with extremely strong magnetic fields or with superintense laser fields. Our chief

aim is to illustrate further aspects of the large-D limit as a semiclassical approximation

method.
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7.1. H atom in superstrong magnetic fields

The energy level structure induced by strong magnetic fields has a prominent role in many

problems in astrophysics and solid-state physics, as well as in atomic physics [114]. For the

H atom, a wide variety of approximation methods have been studied, because the

Hamiltonian is non-separable and there is no natural perturbation parameter valid at both

high and low fields. Exact calculations are now feasible for any field strength, by means of

modern computing power. However, in addition to heuristic value, semiclassical

approximations [115,116] remain useful, e.g., for calculating quantities such as partition

functions that require evaluation of myriad energy levels.

Figure 27. �m for two species of excited states: (a) Rydberg (1s1ns1S ) states. Dots obtained
from Equation (6.5); (b) intrashell (ns2S ) states. ‘MS’ (dots) are calculated from Equation (6.5),
‘vdM’ (squares) from van der Merwe [97–99], and 2e�/sphere (circles) from model calculations for
two-electrons on a rigid sphere (taken from Herschbach et al. [86]).
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For a hydrogen atom in a uniform magnetic field B along the z axis, the energy

levels are Eþ 1
2mB, where m is the magnetic quantum number and E an eigenvalue of

H¼TþUþV, with

T ¼ �
1

2

@2

@�2
þ
@2

@z2

� �
,

U ¼
1

2

�ð�þ 1Þ

�2
,

V ¼ � �2 þ z2
	 
�1=2

þ
1

8
B2�2:

ð7:1Þ

Figure 28. Energy and most probable radii for two species of excited states: (a) Rydberg (1s1ns1S )
states. Stars are optimized energies from Equation (6.5); dotted curve is the energy curve from
Equation (6.7); diamonds and triangles are experimental energies for 1S and 3S states respectively
[53]; circles and dots are the most probable radii for the outer and inner electrons. (b) intrashell
(ns2S ) states. Stars are energies from minimizing Equation (6.5); circles are corresponding energies
taken from Lindroth [113]; dots are the most probable radii, r1m¼ r2m, of the electrons.
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In atomic units, B¼ 1 corresponds to a field strength of m2
ece

3=�h3, which is approximately

2.35� 105 tesla. The dependence on D and jmj enter only in the quantity � ¼ jmj þ
1
2 ðD� 4Þ. Interdimensional degeneracies therefore occur between states with angular

momentum along the z-axis of jmj in D dimensions and states with jmj � in Dþ 2
dimensions [117,118]. Since changing D is equivalent to changing jmj, we will retain

D¼ 3 and instead use jmj!1 to carry out scaling. We define �¼ 1/(jmj þ a), where

the shift constant a is included to preserve � as a finite parameter at m¼ 0. Then we scale

units via

� ¼ ��2 ~�, z ¼ ��2 ~z,

E ¼ �2 ~E, B ¼ �3 ~B, ð7:2Þ

which transform the Hamiltonian via

T! �2 ~T, U! 1� 2a�þ a2 �
1

4

� �
�2

� �
~U, V! ~V, ð7:3Þ

where ~T ¼ Tð ~�, ~zÞ, etc. For large jmj, the factor of �2 plays the role of �h2 in the Schrödinger

equation for a particle of unit mass subject to an effective potential ~W ¼ ~Uþ ~V. In the

limit �! 0, all the eigenvalues collapse to

~E0 ¼ ~W ~�m, ~zmð Þ, ð7:4Þ

at the minimum of the effective potential. There ~zm ¼ 0 and ~�m is found as a positive root

of the equation ~B2 ~�4m ¼ 4ð1� ~�mÞ. Thus, as jmj!1, the electron becomes localized on

a circular orbit of radius ~�m, which shrinks to zero in the strong field limit, B!1.

A formulation suitable for the entire range of field strengths is obtained via a further

scaling [118],

� ¼ ~�= ~�m, � ¼ ~z= ~�m, " ¼ ~�2m
~E0: ð7:5Þ

This recasts the effective potential as

Wð�, �Þ ¼
1

2�2
�

1� g

ð�2 þ �2Þ1=2
þ
1

2
g�2, ð7:6Þ

where g ¼ 1� ~�m ¼ ~B2 ~�4m=4. Variation of g from zero to unity corresponds to varying the

field strength from zero to infinity,

~B ¼ 2g1=2ð1� gÞ�2: ð7:7Þ

At the jmj!1 limit, the classical dynamics of the rescaled circular orbit do not depend

on the magnetic field, since �m and the orbital velocity 1/�m remain unity. Fluctuations

about this orbit for jmj51 may be incorporated by introducing �-scaled displacement

coordinates, defined by �� 1¼ �1/2q1, �¼ �
1/2q2, and expanding W(�, �) as

W ¼Wmð1, 0Þ þ �
1

2
!2
1q

2
1 þ

1

2
!2
2q

2
2 � aþ 	 	 	

� �
: ð7:8Þ
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Here Wmð1, 0Þ ¼ ~�2m
~E0 ¼ �

1
2þ

3
2 g and the terms linear in � correspond to a pair of

independent harmonic oscillators, q1 and q2, vibrating perpendicular and parallel to the

magnetic field, respectively, with frequencies !1¼ (1þ 3g)1/2 and !2¼ (1� g)1/2.
Figure 29 plots the contribution of these harmonic vibrations to the scaled energy

levels, "¼ "0þ �("har� a)þ 	 	 	, given by

"harðgÞ ¼ !1 v1 þ
1

2

� �
þ !2 v2 þ

1

2

� �
: ð7:9Þ

At the zero field limit, the H atom is unperturbed; !1¼!2¼ 1 and the vibrational terms,

"har(0)¼ v1þ v2þ 1, group into bunches associated with different values of the principal

Coulombic quantum number, with n¼ v1þ v2þ 1. Since in the zero field limit

E ¼ �2Wmð1, 0Þ ¼ �
1

2
ðjmj þ aÞ�2, ð7:10Þ

the shift parameter is specified as a¼ v1þ v2þ 1, to conform at jmj ¼ 0 to the exact

hydrogenic energy levels. In the high field limit, !1¼ 2, !2¼ 0, "har(1)¼ 2v1þ 1, and the

terms cluster into Landau resonances. When g¼ 3/7, the ratio of frequencies is 2 : 1, and

a host of curve-crossings occur, akin to Fermi resonances in molecular vibrations. Many

other such crossings occur, stemming from branch point singularities which can be

identified in the complete � plane [117]. Anharmonic contributions from terms higher

Figure 29. The rescaled vibrational energy of the even parity states (solid curves) and odd parity
states (dashed curves) in the large m limit. The curves are labelled by harmonic oscillator quantum
numbers v1, v2. From [119].
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order in � convert the crossings into avoided intersections (‘anti-crossings’) and otherwise
shift levels increasingly as jmj decreases.

Of special interest are circular Rydberg states with jmj ¼ n� 1. In the field-free atom
these have exceptionally long radiative lifetimes and resemble the Bohr model increasingly
for large jmj� 1. Even for high fields, for such states it is often adequate to include just
the harmonic oscillations about the orbit [120,121]. Figure 30 illustrates the impressive
accuracy obtained by simply using first-order harmonic oscillator wavefunctions to
calculate the lifetimes of some circular states, over a range of magnetic field strength
extending to about 102 tesla, which is above laboratory limits.

7.2. Atom ionization inhibited by superintense laser fields

High-frequency superintense laser fields induce exotic and often paradoxical electronic
properties of atoms [122]. A particularly striking aspect is that the ionization probability
decreases as laser intensity increases [123]. Moreover, it becomes possible to bind
‘extra electrons’. Calculations employing Floquet theory have predicted stabilization of
multiply-charged anions of hydrogen [124] and doubly charged anions of helium and
lithium atoms [125]. As yet, such stabilization has not been demonstrated experimentally,
except for atoms initially prepared in a Rydberg state [126].

The predicted stabilization of atomic anions is accompanied by splitting of the
electronic charge distribution into lobes governed by the polarization of the laser field.
This localization of the electrons markedly reduces encounters with the nucleus as well as
electron correlation and hence suppresses autoionization [123,127]. Such pronounced
localization suggests that the pseudoclassical large-D limit might provide a useful
approximation. Indeed, a Bohr-style model has proved to work well for evaluating the

Li
fe

tim
e 

(m
se

c)

Magnetic field strength, B

Figure 30. Radiative lifetimes of the m¼�25 and �35 circular Rydberg states of H as a function of
the magnetic field strength B (in units of 2.35� 105 tesla). Full curves computed from harmonic
oscillator approximation [120], points from high-order perturbation expansion [121]. Figure taken
from Ref. [120].
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detachment energy as a function of the laser field parameters [128]. As the large-D limit
requires far simpler computations than D¼ 3, it can facilitate examining prospects for
other effects induced by superintense laser fields.

We consider a high-frequency monochromatic electric field with amplitude E0 and
frequency ! incident on an N-electron atom. In the dipole approximation, each electron
is subjected to the same field and undergoes quiver oscillations �(t) along a trajectory
given by

�ðtÞ ¼ �0ðe1 cos!tþ e2 tan � sin!tÞ, ð7:11Þ

where the quiver amplitude is �0¼E0/!
2. The spatial orientation of the oscillations is

specified by e1 and e2, unit vectors orthogonal to each other and to the propagation
direction of the laser; �¼ 0 corresponds to linear polarization and �¼��/4 to circular
polarization. In a reference frame (KH, for Kramers–Henneberger), translated by �(t) with
respect to the laboratory frame, the electrons no longer quiver, while instead the nucleus
quivers along the �(t) trajectory. In the KH frame, the Coulombic attraction between
any electron and the nucleus takes the form �Z/jriþ �(t)j, where Z is the nuclear charge.
Thus, in the KH frame, the atomic structure corresponds essentially to the large-D limit,
except that the nuclear charge is no longer located in a point but rather is smeared out, in
a fashion governed by the quiver amplitude, frequency dependence, and polarization of the
laser field.

The high-frequency Floquet theory (HFFT) pertains when the field frequency is high
compared with the excitation energy of the atom in the field. Then the electrons feel
a time-averaged effective potential, termed the ‘dressed potential’, given by

V0ðri,�0Þ ¼ �
Z

2�

Z 2�!

0

d�

jri þ �ðtÞj
, ð7:12Þ

where �¼!t and the average extends over one period of the laser field. The corresponding
Schrödinger equation in the KH frame is

XN
i¼1

1

2
p2i þ V0ðri,�0Þ þ

Xi�1
j¼1

1

jri � rjj

" #
� ¼ "ð�0Þ�: ð7:13Þ

The field parameters E0 and ! appear only in the dressed potential and enter only via �0,
the quiver amplitude. Of prime interest is the detachment energy required to remove one
of the N electrons,

DE ðN Þð�0Þ ¼ "
ðN�1Þð�0Þ � "

ðN Þð�0Þ, ð7:14Þ

determined by the energy eigenvalues obtained from Equation (7.13). As long as DE40,
the N-electron atom or ion remains stable with respect to loss of an electron and thus
supports at least one bound state. This stabilization requires �04�crit0 , the critical quiver
amplitude for which DE¼ 0. At some higher value, denoted by �max

0 , the DE reaches its
maximum positive value and as �0 increases further DE eventually returns to zero.

Figure 31 shows DE(�0) functions obtained from the large-D version of HFFT,
as applied to hydrogen or helium atoms with N¼ 2, 3, 4 in superintense laser fields with
linear polarization [128]. The agreement with results from conventional D¼ 3 calculations
is very good.
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In the D-scaling treatment, it is convenient to use cylindrical coordinates, in view of the
axial symmetry that obtains for either linear or circular polarization. Because for large �0
there is virtually no overlap among lobes of the electron distribution, electron correlation
can be neglected, so only the Hartree–Fock (HF) case need be considered. At the large-D
limit the effective Hamiltonian corresponding to Equation (7.13) then becomes

W ¼
1

2

XN
i¼1

1

�2i
þ
XN
i¼1

V0ð�i, zi,�0Þ þ
XN
i¼1

XN
j¼iþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i þ �

2
j þ ðzi � zjÞ

2
q , ð7:15Þ

where for the ith electron, �i measures the distance from the polarization axis, zi is the
distance along that axis. For linear polarization, the dressed electron–nucleus interaction is
given by

V0ð�i, zi; �0Þ ¼ �
Z

2�

Z 2�

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i þ ðzi � �0 sin�Þ

2
q : ð7:16Þ

All distance coordinates, including �0, are scaled by �2 and energies by ��2, with
�¼ (D� 1)/2. Except for the dressed potential, Equation (7.15) corresponds simply to a
Bohr-style model; the first term is the centrifugal contribution from the kinetic energy, the
third is the electron–electron repulsion, simplified in form because the dihedral angle
between any pair of electrons, �i��j¼ 90� in the HF large-D limit [96]. By minimizing
Equation (7.15) we obtain the energy "(N) as well as the positions of the localized electrons
as functions of �0. As verified in the D¼ 3 calculations, because the relevant range of �0 is

Figure 31. Negative of detachment energy, �DE(N)(�0), for removal of an electron as a function of
the quiver amplitude, �0, for the ground states of H�, H2�, He�, and He2� in the high frequency
limit of linearly polarized laser fields. Results, from [128], are shown for D¼ 3 and the large-D limit.
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so large, the overlap of one-electron orbitals is negligibly small [128]. Accordingly, the HF
exchange terms are likewise negligible and since the Hamiltonian is independent of spin,
the eigenvalues are degenerate with respect to spin. For circular polarization, the
procedure is the same except reorienting the quiver amplitude, which changes the form of
the dressed potential.

As seen in Figure 31, the dependence of the electron detachment energy on quiver
amplitude resembles the potential energy curve for stretching a chemical bond, although
DEmax is much smaller than typical bond dissociation energies and �max

0 is very much larger
than equilibrium bond lengths. Figure 32 shows that the correlation between DEmax and
�max
0 is actually similar to, but not as steep, as that between bond strengths and lengths for

H2, H
þ
2 , and Heþ2 molecules. This correlation extends over three orders of magnitude and is

much the same for linear and circular polarization and whether D¼ 3 or the large-D limit.
These results, obtained from a rudimentary version of D-scaling, encourage

applications to exploratory studies of other superintense laser processes, particularly
involving electron localization. Inviting opportunities include evaluating the large-D limit
of HFFT for molecules and incorporating time dependence to examine ionization lifetimes
and dynamics at laser intensities below the threshold for stabilization.

8. Conclusions and outlook

In this review, our chief aim has been to illustrate how well the newly resurrected Bohr
model and kindred large-D approximations can simulate major features of few-electron

Figure 32. Log-log plot of the detachment energy (eV) as a function of �max
0 (a.u.) for the ground

state of H�, H2�, He�, and He2� at D¼ 3 and D¼1 in linearly and circularly polarized
superintense laser fields. For analogy we plot on the top left side corner a Log-Log plot of the
dissociation energy as a function of the internuclear distance at D¼ 3 for the molecules H2, H

þ
2 and

Heþ2 . Note the similarity in behaviour of atoms in superintense laser fields and their equivalent
diatomic molecules.
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atoms and molecules. The ease and simplicity with which these methods provide modest
but useful accuracy and heuristic insights are their main virtues. Accordingly, we have
limited consideration almost entirely to the large-D limit. We conclude with comments
about broader aspects of this limit, first noting its curious relation to rival prequantum
models of atomic structure and chemical bonding. We point out also how in the large-D
limit the changes in electronic geometry that occur as bonds are stretched correspond to
introducing alternative resonance structures in wave mechanics. We then consider
prospects for joining D-scaling with other methods to extend its utility and scope.

8.1. New perspectives on old models

The large-D limit belatedly reconciles the Bohr model with the more rudimentary
prequantum ‘static atom’ model advanced in 1916–23 by Gilbert Newton Lewis and by
Irving Langmuir. An excellent historical account is given in a forthcoming book by Patrick
Coffey [129]. Like the Bohr model, the Lewis–Langmuir model still has a semantic role,
even beyond introductory texts. Relying on his intuition and wide empirical perspective,
Lewis proposed that chemical bonds generally were formed by shared electron pairs [40].
This key idea enabled him to interpret a host of chemical observations, although he
visualized atoms as cubical, with electrons perched at the corners. He objected to Bohr’s
picture of orbiting electrons, as Lewis felt it could not explain the stability and geometry of
molecules and crystals. Langmuir became an ardent advocate of largely static models, but
eventually suggested atoms were likely spherical and that ‘the electrons could . . . rotate,
revolve, or oscillate about definite positions in the atom’ [48]. Most chemists in that era
were content to draw ‘Lewis dot’ diagrams of molecules, blithely guessing where to locate
the valence electrons forming bonds. Physicists viewed such static models with distain;
Robert Millikan in 1924 assailed the Lewis model as ‘electrons sitting around on dry goods
boxes at every corner, ready to shake hands with, or hold onto similar loafer electrons in
other atoms’ [130].

In the D!1 limit, however, the electrons do become loafers. In the D-scaled space,
they assume fixed positions relative to the nuclei and each other that correspond to the
minimum of the effective potential, UþV. In homage, this has been termed the Lewis
structure [24]. It can be calculated exactly from classical electrostatics and thus provides
a rigorous version of the qualitative electron-dot formulas introduced by Lewis in 1916.
Indeed, Loeser obtained a fair approximation (Figure 6), in his treatment of many-electron
atoms at large-D [68], after reducing the problem to only one radial and one angular
variable by assuming that the electrons reside at the corners of a regular simplex,
a ‘hypertetrahedron’ version of Lewis’ cubical atom. In the recent analysis by Sergeev of
the Bohr model for large atoms [66], minimizing our Equation (2.12), he found that as N
increases the electrons within each shell do in fact assume a symmetrical simplex geometry.

For D finite but very large, the electrons are confined to harmonic oscillations about
the fixed positions attained in the D!1 limit; this corresponds to the first-order
perturbation term, proportional to 1/D, and is calculable from the curvatures of the
effective potential about its minimum. The 1/D contributions, which prod the loafer
electrons into shuffling and swaying, have been termed Langmuir vibrations [24], to
acknowledge the prescient suggestion he made in 1919. In the large-D limit, the Bohr,
Lewis and Langmuir models merge.
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The large-D limit also offers a new perspective on another aspect of chemical bonding
that, in its historical context, had provoked controversy [26]. This is the concept of
resonance between alternative valence-bond structures, advocated with evangelical zeal by
Linus Pauling [54]. Many polemical attacks repeatedly pointed out that the exchange or
resonance integrals, exemplified in the prototype Heitler–London treatment of H2, do not
appear in less approximate treatments. By extension, the critics concluded that for any
molecule resonance is an artifact, a misleading consequence of using a particular
variational form to approximate the wavefunction.

In the large-D limit, as illustrated for H2 in Sections 2.1 and 3.1 (cf. Figures 3 and 8),
the effective potential UþV and hence the electron distribution changes form as the
internuclear distance varies. Thus, UþV exhibits minima that correspond to a different
Lewis structure for each distinct valence bond configuration. At small R, there is a single
minimum and the electrons reside in the plane bisecting the internuclear axis (H :H dot
structure). At larger R, two pairs of double minima emerge [14,35]. One pair corresponds
to localizing each electron on a different nucleus (H 	 þH 	); the other pair, much less
favourable energetically, has both electrons on one or the other nucleus (H :þH and
HþH :). Tunnelling of the electrons among these various minima in the effective potential
corresponds to resonance among the different Lewis structures. In valence-bond theory,
these structures are represented by different approximate wavefunctions. However, it is
satisfying that the large-D limit, which does not involve assumptions about the
wavefunction, clearly exhibits the equivalent of Pauling resonance among distinct Lewis
structures.

8.2. Prospects for wider use of D-scaling

The fixed electronic geometry attained in the large-D limit, a pointwise delta-function,
differs drastically from a D¼ 3 wavefunction and moreover lacks exchange and shell
structure. It thus is surprising that such an unrealistic model nonetheless offers useful
information for determining D¼ 3 results, particularly about electron correlation.
An instructive analysis has been given by Loeser and colleagues [131]. A crucial feature
is that the pointwise large-D structure exists in the scaled space, not the ‘real world’. All
electronic positions have components outside the D¼ 3 physical subspace, and those
hyperdimensional components significantly enhance the ability of a localized structure to
represent the true solution and to model it quantitatively. As noted in Section 2.2, in
treating the Bohr model for large atoms, Sergeev exploited a kindred aspect and got
substantially improved accuracy.

Also surprising, as seen in Sections 2 and 3, is that fairly good molecular potential
curves for diatomic chemical bonds can actually be obtained simply by minimizing an
algebraic function, UþV, derived from the large-D limit and equivalent to classical
mechanics. Determining the energy from UþV indeed amounts to generalizing the
balance of centrifugal and Coulombic interactions invoked by Bohr in his 1913 treatment
of the H atom. It can also be regarded as generalizing the estimate of the H atom size
and energy obtained from a pedagogically appealing uncertainty principle argument.
As presented by Feynman [132]: if the spread in position of the electron is of order a, the
spread in its momentum is of order h/a, thus the sum of the kinetic energy and potential
energy is roughly E� h2/2ma2� e2/a; minimizing this gives a¼ h2/me2, the Bohr radius,
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and E¼�e2/2a, the Rydberg. (Since a is only vaguely defined, the results are contrived but

‘the idea is right’.) In effect, the D-scaling procedure serves to incorporate the uncertainty

principle, while morphing the Schrödinger equation into Newtonian mechanics at the

large-D limit.
As noted in Section 2, despite its localization of the electrons, the large-D limit is fully

consistent with the uncertainty principle. Because the coordinate localization occurs in the

D-scaled space, the conjugate momenta are scaled inversely, so the position-momentum

commutator remains invariant in that space, for any D-value. This key aspect of quantum

mechanics is discreetly hidden in the choice of D-dependent distance units. Hence,

seemingly classical calculations at large-D are still quantum mechanical. In particular,
electronic tunnelling can be computed as if the electrons sat motionless at the minima of

a classical electrostatic potential in D-scaled space, because the scaling relates this limit

to the quantum fluctuations that actually occur in the physical D¼ 3 subspace [133,134]

(for commentary, see also [14] and [26]). Thereby a property, regarded as quintessentially

quantal, can be approximated fairly well by a purely classical calculation.
Another virtue of D-scaling is that it treats the full Hamiltonian. Thus, in principle,

the ability to approximate D¼ 3 results does not depend directly on the magnitude of

interactions, or the extent of non-separability or correlations among variables, but rather

depends chiefly on the D-dependence. A straightforward way to go beyond the D!1

limit is a perturbation expansion in 1/D, or in a related quantity such as 1/(D� s), with s

a shift parameter chosen by some auxiliary criterion (as in Section 7.1). We merely note
here some references that evaluate the first-order 1/D contribution, the harmonic

Langmuir vibrations [14,18,68,111]. For atoms this is relatively easy and usually improves

quantitative results appreciably. For atoms, efficient algorithms for computing and

summing large-order anharmonic 1/D terms have been developed [19,20,112,135]. These

appear capable of providing highly accurate solutions of the exact Schrödinger equation

for atoms with as many as 10 coupled internal degrees of freedom. Also, Goodson has
formulated a self-consistent-field theory which invokes separability in terms of large-D

normal vibrational coordinates, each of which describe correlated motion of many

particles [135]. This offers a practical means to treat much larger atoms.
For molecules, however, the 1/D perturbation expansion is much less tractable. Even

evaluating the first-order term is troublesome, because it involves the curvature of the

large-D effective potential, UþV, which often changes abruptly as R (or other geometrical
parameters) are varied and the Lewis structure changes. In deriving the E(R) potential

energy curve for H2, as in Figures 2 and 9, we computed the 1/D term but found it

introduced an unpalatable sharp cusp near the equilibrium bond distance. This resulted

from the symmetry breaking illustrated in Figure 3, which switches the electron

distribution from unimodal to bimodal. The same effect is prominent for Hþ2 ; an
insightful analysis by Tan and Loeser brought out reasons why the critical R for the

symmetry breaking occurs near the equilibrium bond distance [101,102]. Such switches

among distinct Lewis structures have the character of phase transitions [136–139] and will

be ubiquitous for molecules. Hence other methods not involving even the first-order 1/D

term are more inviting for molecules, such as the interpolation and constraint techniques

illustrated in Sections 3 and 4.
For further development of Bohr-like models and D-scaling treatments of electronic

structure, it appears most practical to focus chiefly on the large-D limit. Some applications,
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such as presented in Section 7, do not require high accuracy but involve unusually awkward

or tedious computations if treated by conventional quantum mechanics. There are also

opportunities to enhance the scope and efficacy of the D-scaling used to obtain the large-D

limit. The contrast in Section 5 between the Bohr model for H2 and its united atom,

He, suggests that results for molecules might be improved by introducing R-dependence in

the D-scaling. For instance, that could be done by adjusting the Jacobian, in the fashion of

Section 6, so that the appropriate angular factors appear in the united atom limit but are

quenched elsewhere for the sake of enhancing chemical bonding.
A general procedure for modifying the D!1 limit has been developed by Loeser

to render it more realistic in modelling D¼ 3 electronic structure [140]. This involves

constructing subhamiltonians, qualitatively similar to the Bohr-like pseudoclassical UþV

forms we have considered. These are augmented by ‘prescalings’ that build in both shell

structure and generic aspects of radial and angular nodal structure, guided by hydrogenic

or SCF results. Although thus far applied mostly to atoms, Loeser emphasizes that

subhamiltonians for molecules and solids can be constructed in essentially the same way.

He regards the ‘primary appeal of the method is its ability to model correlation

effects . . . [with] no use of basis sets’.
Another approach, likewise motivated by the simplicity of the large-D limit, is to seek

ways to meld it directly with D¼ 3 methods [28]. This strategy has thus far been used in

two versions that combine large-D with Hartree–Fock (HF) results. As applied to many-

electron atoms, both involve using the large-D limit to find a renormalized nuclear charge

that yields an improved approximation to the D¼ 3 energy. In the version (denoted A)

tried first, the renormalized charge, Zþ�Z, was determined via

EHF
1 ðN,Zþ�ZÞ � EHF

3 ðN,ZÞ: ðVIII:1aÞ

The corresponding D¼ 3 approximation [141–143] (for commentary, see also [14] and [27])

is then obtained by renormalizing the large-D limit via

E3ðN,ZÞ � E1ðN,Zþ�ZÞ: ðVIII:2aÞ

The second version (denoted B) instead finds the renormalized charge, Zþ �Z, from

EHF
1 ðN,Zþ �ZÞ � E1ðN,ZÞ, ðVIII:1bÞ

and obtains the D¼ 3 approximation [144–146] (for commentary, see also [28]) by

renormalizing the Hartree–Fock energy,

E3ðN,ZÞ � EHF
3 ðN,Zþ �ZÞ: ðVIII:2bÞ

Both versions used the same input data: D¼ 3 Hartree–Fock results [60–63] plus the

large-D limit approximation derived in analytical form by Loeser for ground state

N-electron atoms [68]. The latter is simplified by considering only S states and evaluating

the UþV minimum for a totally symmetric configuration with all electrons equivalent.

Thereby, the dimensional renormalization (DR) process requires only elementary

computations, little more than the solution of a quartic equation. By combining the HF

approximation (which lacks correlation) with the large-D limit (which lacks exchange),

both DR methods yield much better accuracy than the HF or large-D inputs.
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Moreover, further improvement was obtained by augmenting the zeroth-order DR

schemes indicated in Equations (8.1 and 8.2) by leading order corrections in 1/Z (version

A) or 1/D (version B). In particular, when electronic configurations of the same symmetry

become degenerate for Z!1, as often occurs, it becomes important to include the

zeroth-order mixing. That correction only requires diagonalizing a small matrix in

a hydrogenic basis. Again, the accuracy obtained is much better than the input

approximation; incorporating the leading 1/Z term in the DR was found to provide

about 95% of the correlation energy for atoms and cations with N¼ 2–18 electrons and

Z¼ 2–28. An especially instructive case for DR was the hydride ion, H�. The large-D limit

has a saddle point rather than a minimum, but use of a complex D-scaling procedure [147]

enabled DR (version B) to obtain a good result. In another application of DR (version A),

the dependence on Z and N of the renormalized energies for atoms and cations was

examined over the range Z,N¼ 2! 290 [141–143] (for commentary, see also [14] and

[27]). This demonstrated an excellent correspondence with the Thomas–Fermi statistical

model. The DR treatment also yielded accurate results for oscillatory structure not present

in the TF model and related to angular correlation of the outermost electrons [148–150].

The DR method can readily be tried using other inputs, such as the large-D results

obtained by Sergeev in his new treatment of the Bohr model [66] or (instead of HF) the

Møller–Plesset or other conventional methods.
For molecules the focus has to be on the correlation energy, which is typically

comparable to or larger than the bond energy. (For example, for the F2 molecule, the

HF approximation gives better than 99.6% of the total energy, yet fails to predict that

the molecule is bound.) For many-electron molecules, DR via version A has not been

tractable but version B has provided a promising approach [144–146] (for commentary, see

also [28]). In essence, this combines renormalized charge increments �Z� determined for

each constituent atom � with slopes, ��� @E
HF/@Z�, computed from the molecular

Hartree–Fock energy. The charge increments are evaluated from the atomic correlation

energies, �E�� ���Z�. The corresponding approximation for the correlation energy for

a diatomic molecule is

�E�� � �� þ
Z�
R

� �
�Z� þ �� þ

Z�
R

� �
�Z� þ

@E

@R
�R: ðVIII:3Þ

The Z/R terms arise from the nuclear-nuclear repulsion. The third term represents

a contribution from renormalizing the internuclear distance. Its contribution is estimated

[144–146] (for commentary, see also [28]) to be an order of magnitude smaller than those

from renormalizing the nuclear charges; also at the equilibrium bond distance and at large

R the third term vanishes. For a polyatomic molecule, the correlation energy can be

obtained in the same way, just by adding analogous terms to Equation (VIII.3). Kais and

coworkers [144–146] (for commentary, see also [28]) have tested this approach by

determining the correlation energy at the equilibrium R for about 20 molecules, including

Be2 . . .F2; HF, LiF, BeO; H2O, CH2, and CH4. Comparison with high level correlated

ab initio calculations, MP4 and CISD(T), indicates that their DR method typically

gives 70% or more of the correlation energy. This is remarkable, since beyond large-D

results for the constituent atoms, the method requires only slight modifications of the

standard Hartree–Fock algorithm. As expected, better results are obtained with input
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approximations which model non-dynamical electron correlation, such as CASSCF

(complete active space multiconfigurational HF) and unrestricted HF.
Further evidence for the utility of the large-D limit in evaluating electron correlation

has been obtained in a study applying DR to the Hooke’s Law Atom [151]. For that

model, the electron–electron repulsion is Coulombic, but the electron–nucleus attraction is

replaced by a harmonic oscillator potential. For a particular value of the force constant,

an exact analytical solution is available [152]. Exact exchange and correlation functionals

obtained for this model were used to test customary approximations employed in density

functional theory [2]. Renormalization of the large-D limit gave excellent agreement with

the exact results, including over 95% of the correlation energy.
As attested by the examples cited above, DR offers inviting opportunities to hybridize

the large-D limit with other methods. A prime candidate is density functional theory, since

the large-D limit is compatible with the large-N limit and the Kohn–Sham (KS) and HF

equations are formally similar, both involving single particle orbitals. In principle the KS

method can yield exact results for the energy and electron density, but in practice the

accuracy is limited because the correct form for the exchange-correlation functional is not

known. An alliance of D-scaling with density functional theory may provide constraints

[153] useful in improving exchange-correlations functionals [151,154]. This would exploit

both the utility of the large-D limit in estimating electron correlation and the ability of

DFT to employ the same functionals in treating atoms and molecules. An especially

appealing possibility, yet to be explored, is to introduce D-scaling into reduced density

matrix mechanics. The major advances recently made in that field are reviewed in

a beckoning book edited by David Mazziotti [13]. This appears to offer congenial

possibilities for DR that involve treating no more than three or four electrons. Especially

pertinent for DR is a chapter by Kais, devoted to relations among electron correlation,

entanglement, and density matrices [155]. Again, a key aim would be to find out whether

D-scaling can identify useful constraints for constructing the density matrices.
We dedicate this review to enterprising colleagues, past, present, and future, not

content with brute-force computation and eager to pursue unorthodox approaches to

electronic structure in the spirit of Niels Bohr.
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